Structure connectivity of folded crossed cubes based on faulty stars

被引:0
|
作者
Guo, Huimei [1 ]
Hao, Rong-Xia [1 ]
Mamut, Aygul [2 ]
Chang, Jou-Ming [3 ]
Wu, Jie [4 ]
机构
[1] Beijing Jiaotong Univ, Sch Math & Stat, Beijing 100044, Peoples R China
[2] Xinjiang Univ, Sch Math & Syst Sci, Urumqi 830046, Peoples R China
[3] Natl Taipei Univ Business, Inst Informat & Decis Sci, ,, Taipei 10051, Taiwan
[4] Temple Univ, Dept Comp & Informat Sci, Philadelphia, PA 19122 USA
基金
中国国家自然科学基金;
关键词
Folded crossed cubes; Structure connectivity; Interconnection network; SUBSTRUCTURE CONNECTIVITY; TOLERANCE; HYPERCUBE;
D O I
10.1007/s12190-025-02372-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Large parallel computer systems bounding experience faults are inevitable due to their scale sizes, which poses serious reliability challenges for interconnection networks. Two new indicators were recently introduced to assess the stability of these networks more accurately, including structure connectivity and substructure connectivity. These parameters are crucial in measuring fault tolerance during chip failures. Let H be a certain graph pattern, and F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} be a set of subgraphs in a graph G. Then, F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} is called an H-structure cut (resp. H-substructure cut) of G if every element of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} is isomorphic to H (resp. isomorphic to a connected subgraph of H) when G-F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G-\mathcal {F}$$\end{document} is disconnected. The H-structure connectivity kappa(G;H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa (G; H)$$\end{document} (resp. H-substructure connectivity kappa s(G;H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa <^>s(G; H)$$\end{document}) is the minimum cardinality over all H-structure cuts (resp. H-substructure cuts). Recently, Ba, in her Ph.D. dissertation, posted the result of K1,r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1,r}$$\end{document}-(sub)structure connectivity of FCQn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$FCQ_n$$\end{document} for 1 <= r <= n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le r\le \frac{n}{2}$$\end{document}, where FCQn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$FCQ_n$$\end{document} denotes the n-dimensional folded crossed cube, which is a variant of the hypercube called crossed cube by enhancing a folded link between any two complementary vertices. In this paper, to supplement the completeness of the findings of this study, we successfully determine the K1,r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1,r}$$\end{document}-(sub)structure connectivity of FCQn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$FCQ_n$$\end{document} for n2+1 <= r <= n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{n}{2}+1\le r\le n$$\end{document}, which solves the open problem proposed by Ba.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] The super connectivity of folded crossed cubes
    Cai, Xuepeng
    Vumar, Elkin
    INFORMATION PROCESSING LETTERS, 2019, 142 : 52 - 56
  • [2] Super connectivity of folded twisted crossed cubes
    Guo, Litao
    Ekinci, Gulnaz Boruzanli
    DISCRETE APPLIED MATHEMATICS, 2021, 305 : 56 - 63
  • [3] The g-extra connectivity of folded crossed cubes
    Guo, Huimei
    Sabir, Eminjan
    Mamut, Aygul
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2022, 166 : 139 - 146
  • [4] Structure connectivity of folded cross cubes
    Ba, Lina
    Zhang, Heping
    COMPUTER JOURNAL, 2024,
  • [5] The Orbits of Folded Crossed Cubes
    Liu, Jia-Jie
    COMPUTER JOURNAL, 2023, 67 (05): : 1719 - 1726
  • [6] The cycle-structure connectivity of crossed cubes
    Ba, Lina
    Zhang, Heping
    THEORETICAL COMPUTER SCIENCE, 2022, 922 : 335 - 345
  • [7] Embedding meshes/tori in faulty crossed cubes
    Yang, Xiaofan
    Dong, Qiang
    Tang, Yuan Yan
    INFORMATION PROCESSING LETTERS, 2010, 110 (14-15) : 559 - 564
  • [8] Star-structure connectivity of folded hypercubes and augmented cubes
    Ba, Lina
    Wu, Hailun
    Zhang, Heping
    JOURNAL OF SUPERCOMPUTING, 2023, 79 (03): : 3257 - 3276
  • [9] Star-structure connectivity of folded hypercubes and augmented cubes
    Lina Ba
    Hailun Wu
    Heping Zhang
    The Journal of Supercomputing, 2023, 79 : 3257 - 3276
  • [10] Vertex-transitivity on folded crossed cubes
    Pai, Kung-Jui
    Chang, Jou-Ming
    Yang, Jinn-Shyong
    INFORMATION PROCESSING LETTERS, 2016, 116 (11) : 689 - 693