Structure connectivity of folded crossed cubes based on faulty stars

被引:0
|
作者
Guo, Huimei [1 ]
Hao, Rong-Xia [1 ]
Mamut, Aygul [2 ]
Chang, Jou-Ming [3 ]
Wu, Jie [4 ]
机构
[1] Beijing Jiaotong Univ, Sch Math & Stat, Beijing 100044, Peoples R China
[2] Xinjiang Univ, Sch Math & Syst Sci, Urumqi 830046, Peoples R China
[3] Natl Taipei Univ Business, Inst Informat & Decis Sci, ,, Taipei 10051, Taiwan
[4] Temple Univ, Dept Comp & Informat Sci, Philadelphia, PA 19122 USA
基金
中国国家自然科学基金;
关键词
Folded crossed cubes; Structure connectivity; Interconnection network; SUBSTRUCTURE CONNECTIVITY; TOLERANCE; HYPERCUBE;
D O I
10.1007/s12190-025-02372-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Large parallel computer systems bounding experience faults are inevitable due to their scale sizes, which poses serious reliability challenges for interconnection networks. Two new indicators were recently introduced to assess the stability of these networks more accurately, including structure connectivity and substructure connectivity. These parameters are crucial in measuring fault tolerance during chip failures. Let H be a certain graph pattern, and F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} be a set of subgraphs in a graph G. Then, F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} is called an H-structure cut (resp. H-substructure cut) of G if every element of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} is isomorphic to H (resp. isomorphic to a connected subgraph of H) when G-F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G-\mathcal {F}$$\end{document} is disconnected. The H-structure connectivity kappa(G;H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa (G; H)$$\end{document} (resp. H-substructure connectivity kappa s(G;H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa <^>s(G; H)$$\end{document}) is the minimum cardinality over all H-structure cuts (resp. H-substructure cuts). Recently, Ba, in her Ph.D. dissertation, posted the result of K1,r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1,r}$$\end{document}-(sub)structure connectivity of FCQn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$FCQ_n$$\end{document} for 1 <= r <= n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le r\le \frac{n}{2}$$\end{document}, where FCQn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$FCQ_n$$\end{document} denotes the n-dimensional folded crossed cube, which is a variant of the hypercube called crossed cube by enhancing a folded link between any two complementary vertices. In this paper, to supplement the completeness of the findings of this study, we successfully determine the K1,r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1,r}$$\end{document}-(sub)structure connectivity of FCQn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$FCQ_n$$\end{document} for n2+1 <= r <= n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{n}{2}+1\le r\le n$$\end{document}, which solves the open problem proposed by Ba.
引用
收藏
页数:30
相关论文
共 50 条
  • [31] Star-structure connectivity of folded hypercubes and augmented cubes (Sept, 10.1007/s11227-022-04758-z, 2022)
    Ba, Lina
    Wu, Hailun
    Zhang, Heping
    JOURNAL OF SUPERCOMPUTING, 2023, 79 (05): : 5828 - 5828
  • [32] Super fault-tolerance assessment of locally twisted cubes based on the structure connectivity
    Kung, Tzu-Liang
    Teng, Yuan-Hsiang
    Lin, Cheng-Kuan
    THEORETICAL COMPUTER SCIENCE, 2021, 889 : 25 - 40
  • [33] Dimension-exchange-based load balancing on crossed cubes
    Yao, Chong
    Li, Keqiu
    Meng, Jun
    Qu, Wenyu
    PROCEEDINGS OF THE THIRD CHINAGRID ANNUAL CONFERENCE, 2008, : 338 - +
  • [34] The Star-Structure Connectivity and Star-Substructure Connectivity of Hypercubes and Folded Hypercubes
    Ba, Lina
    Zhang, Heping
    COMPUTER JOURNAL, 2022, 65 (12): : 3156 - 3166
  • [35] Hyper star structure connectivity of hierarchical folded cubic networks
    Guo, Huimei
    Hao, Rong-Xia
    Chang, Jou-Ming
    Kwon, Young Soo
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (10): : 14224 - 14241
  • [36] MULTIBAND BANDPASS FILTER (BPF) BASED ON FOLDED DUAL CROSSED OPEN STUBS
    Wibisono, Gunawan
    Firmansyah, Teguh
    Priambodo, Purnomo S.
    Tamsir, Agus S.
    Kurniawan, Taufiq A.
    Fathoni, Achmad B.
    INTERNATIONAL JOURNAL OF TECHNOLOGY, 2014, 5 (01) : 32 - 39
  • [37] The Path-Structure Connectivity of Augmented k-ary n-cubes
    Ba, Lina
    Zhang, Yaxian
    Zhang, Heping
    COMPUTER JOURNAL, 2023, 66 (12): : 3119 - 3128
  • [38] A novel edge connectivity based on edge partition for hypercube and folded hypercube
    Chen, Meirun
    Habib, Michel
    Lin, Cheng-Kuan
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 470
  • [39] THE DISULFIDE BOND CONNECTIVITY OF THE SOLUBLE EGF RECEPTOR SUPPORTS INTERNAL FOLDED STRUCTURE DUPLICATION
    LIU, SY
    KOMORIYA, A
    FASEB JOURNAL, 1994, 8 (07): : A1352 - A1352
  • [40] Efficient technique utilizing an embedding hierarchical clustering-based representation into crossed cubes for TSP optimization
    Selmi, Aymen Takie Eddine
    Zerarka, Mohamed Faouzi
    Cheriet, Abdelhakim
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2025, 28 (02):