Structure connectivity of folded crossed cubes based on faulty stars

被引:0
|
作者
Guo, Huimei [1 ]
Hao, Rong-Xia [1 ]
Mamut, Aygul [2 ]
Chang, Jou-Ming [3 ]
Wu, Jie [4 ]
机构
[1] Beijing Jiaotong Univ, Sch Math & Stat, Beijing 100044, Peoples R China
[2] Xinjiang Univ, Sch Math & Syst Sci, Urumqi 830046, Peoples R China
[3] Natl Taipei Univ Business, Inst Informat & Decis Sci, ,, Taipei 10051, Taiwan
[4] Temple Univ, Dept Comp & Informat Sci, Philadelphia, PA 19122 USA
基金
中国国家自然科学基金;
关键词
Folded crossed cubes; Structure connectivity; Interconnection network; SUBSTRUCTURE CONNECTIVITY; TOLERANCE; HYPERCUBE;
D O I
10.1007/s12190-025-02372-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Large parallel computer systems bounding experience faults are inevitable due to their scale sizes, which poses serious reliability challenges for interconnection networks. Two new indicators were recently introduced to assess the stability of these networks more accurately, including structure connectivity and substructure connectivity. These parameters are crucial in measuring fault tolerance during chip failures. Let H be a certain graph pattern, and F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} be a set of subgraphs in a graph G. Then, F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} is called an H-structure cut (resp. H-substructure cut) of G if every element of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} is isomorphic to H (resp. isomorphic to a connected subgraph of H) when G-F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G-\mathcal {F}$$\end{document} is disconnected. The H-structure connectivity kappa(G;H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa (G; H)$$\end{document} (resp. H-substructure connectivity kappa s(G;H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa <^>s(G; H)$$\end{document}) is the minimum cardinality over all H-structure cuts (resp. H-substructure cuts). Recently, Ba, in her Ph.D. dissertation, posted the result of K1,r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1,r}$$\end{document}-(sub)structure connectivity of FCQn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$FCQ_n$$\end{document} for 1 <= r <= n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le r\le \frac{n}{2}$$\end{document}, where FCQn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$FCQ_n$$\end{document} denotes the n-dimensional folded crossed cube, which is a variant of the hypercube called crossed cube by enhancing a folded link between any two complementary vertices. In this paper, to supplement the completeness of the findings of this study, we successfully determine the K1,r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1,r}$$\end{document}-(sub)structure connectivity of FCQn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$FCQ_n$$\end{document} for n2+1 <= r <= n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{n}{2}+1\le r\le n$$\end{document}, which solves the open problem proposed by Ba.
引用
收藏
页数:30
相关论文
共 50 条
  • [21] Efficient Algorithms to Embed Hamiltonian Paths and Cycles in Faulty Crossed Cubes
    Fan, Jianxi
    Zhou, Wujun
    Han, Yuejuan
    Zhang, Guangquan
    ICCSSE 2009: PROCEEDINGS OF 2009 4TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE & EDUCATION, 2009, : 1837 - 1842
  • [22] The g-extra connectivity and diagnosability of crossed cubes
    Wang, Shiying
    Ma, Xiaolei
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 336 : 60 - 66
  • [23] Connectivity, super connectivity and generalized 3-connectivity of folded divide-and-swap cubes
    Zhao, Shu-Li
    Chang, Jou-Ming
    INFORMATION PROCESSING LETTERS, 2023, 182
  • [24] Three Edge-Disjoint Hamiltonian Cycles in Folded Locally Twisted Cubes and Folded Crossed Cubes with Applications to All-to-All Broadcasting
    Pai, Kung-Jui
    MATHEMATICS, 2023, 11 (15)
  • [25] Structure connectivity and substructure connectivity of Möbius cubes
    Zhao, Xiaojun
    Xue, Shudan
    Deng, Qingying
    Li, Pingshan
    COMPUTER JOURNAL, 2024, 67 (12): : 3207 - 3220
  • [26] Structure connectivity and substructure connectivity of the crossed cube
    Pan, Zhuowen
    Cheng, Dongqin
    THEORETICAL COMPUTER SCIENCE, 2020, 824 : 67 - 80
  • [27] The Bounds of Generalized 4-Connectivity of Folded Divide-and-Swap Cubes
    Xue, Caixi
    Zhou, Shuming
    Zhang, Hong
    JOURNAL OF INTERCONNECTION NETWORKS, 2024, 24 (02)
  • [28] A Model Based on Crossed Cubes for VoD Services
    Shen, Haifei
    Fan, Jianxi
    Cheng, Baolei
    Lin, Cheng-Kuan
    2014 2ND INTERNATIONAL CONFERENCE ON SYSTEMS AND INFORMATICS (ICSAI), 2014, : 659 - 664
  • [29] The h-faulty-block connectivity of k-ary n-cubes
    Hua, Xiaohui
    Zhao, Qin
    COMPUTER JOURNAL, 2024, 68 (02): : 126 - 134
  • [30] Fault tolerability analysis of folded crossed cubes based on g-component and g-good neighbor fault pattern
    Niu, Baohua
    Zhou, Shuming
    Zhang, Hong
    Zhang, Qifan
    THEORETICAL COMPUTER SCIENCE, 2023, 959