Structure connectivity of folded crossed cubes based on faulty stars

被引:0
|
作者
Guo, Huimei [1 ]
Hao, Rong-Xia [1 ]
Mamut, Aygul [2 ]
Chang, Jou-Ming [3 ]
Wu, Jie [4 ]
机构
[1] Beijing Jiaotong Univ, Sch Math & Stat, Beijing 100044, Peoples R China
[2] Xinjiang Univ, Sch Math & Syst Sci, Urumqi 830046, Peoples R China
[3] Natl Taipei Univ Business, Inst Informat & Decis Sci, ,, Taipei 10051, Taiwan
[4] Temple Univ, Dept Comp & Informat Sci, Philadelphia, PA 19122 USA
基金
中国国家自然科学基金;
关键词
Folded crossed cubes; Structure connectivity; Interconnection network; SUBSTRUCTURE CONNECTIVITY; TOLERANCE; HYPERCUBE;
D O I
10.1007/s12190-025-02372-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Large parallel computer systems bounding experience faults are inevitable due to their scale sizes, which poses serious reliability challenges for interconnection networks. Two new indicators were recently introduced to assess the stability of these networks more accurately, including structure connectivity and substructure connectivity. These parameters are crucial in measuring fault tolerance during chip failures. Let H be a certain graph pattern, and F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} be a set of subgraphs in a graph G. Then, F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} is called an H-structure cut (resp. H-substructure cut) of G if every element of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} is isomorphic to H (resp. isomorphic to a connected subgraph of H) when G-F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G-\mathcal {F}$$\end{document} is disconnected. The H-structure connectivity kappa(G;H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa (G; H)$$\end{document} (resp. H-substructure connectivity kappa s(G;H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa <^>s(G; H)$$\end{document}) is the minimum cardinality over all H-structure cuts (resp. H-substructure cuts). Recently, Ba, in her Ph.D. dissertation, posted the result of K1,r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1,r}$$\end{document}-(sub)structure connectivity of FCQn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$FCQ_n$$\end{document} for 1 <= r <= n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le r\le \frac{n}{2}$$\end{document}, where FCQn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$FCQ_n$$\end{document} denotes the n-dimensional folded crossed cube, which is a variant of the hypercube called crossed cube by enhancing a folded link between any two complementary vertices. In this paper, to supplement the completeness of the findings of this study, we successfully determine the K1,r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1,r}$$\end{document}-(sub)structure connectivity of FCQn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$FCQ_n$$\end{document} for n2+1 <= r <= n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{n}{2}+1\le r\le n$$\end{document}, which solves the open problem proposed by Ba.
引用
收藏
页数:30
相关论文
共 50 条
  • [41] An O(log(N)) Algorithm View: Reliability Evaluation of Folded-crossed Hypercube in Terms of h-extra Edge-connectivity
    Qiao, Hengji
    Zhang, Mingzu
    Ma, Wenhuan
    Yang, Xing
    PARALLEL PROCESSING LETTERS, 2023, 33 (01N02)
  • [42] Structure and substructure connectivity of folded divide-and-swap cubeStructure and substructure connectivity...M. Türkmen et al.
    Muhammed Türkmen
    Canan Çiftçi
    Gülnaz Boruzanlı Ekinci
    The Journal of Supercomputing, 81 (4)
  • [43] Investigation of patch antennas based on crossed idiosyncratic PBG structure
    Shen, Ting-gen
    Ji, Pei-lai
    Zhou, Yue-qun
    Ge, Jun
    Yu, Feng-chao
    OPTIK, 2010, 121 (07): : 641 - 645
  • [44] An exchanged folded hypercube-based topology structure for interconnection networks
    Qi, Heng
    Li, Yang
    Li, Keqiu
    Stojmenovic, Milos
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2015, 27 (16): : 4194 - 4210
  • [45] Reconfigurable Beam Pattern Folded Dipole Antenna Based on AMC Structure
    Lago, H.
    Jamlos, M. F.
    Bahari, N.
    Hamid, M. R.
    2015 IEEE INTERNATIONAL RF AND MICROWAVE CONFERENCE (RFM), 2015, : 186 - 189
  • [46] NEW BULK-DRIVEN DVCC BASED ON FOLDED CASCODE STRUCTURE
    Khatib, Nabhan
    Khateb, Fabian
    ELECTRONIC DEVICES AND SYSTEMS: IMAPS CS INTERNATIONAL CONFERENCE 2011, 2011, : 211 - +
  • [47] An Energy Selective Antenna Based on the Folded Dipole Structure and PIN Diodes
    Fang, Jiarui
    Wu, Qi
    Su, Donglin
    IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2023, 65 (06) : 2006 - 2014
  • [48] Design and measurement of beam reconfigurable antenna based on folded dipole structure
    Bahng, K.
    Jung, C. W.
    Kim, K.
    ELECTRONICS LETTERS, 2009, 45 (03) : 138 - 139
  • [49] Connectivity Inference in Mass Spectrometry Based Structure Determination
    Agarwal, Deepesh
    Araujo, Julio-Cesar Silva
    Caillouet, Christelle
    Cazals, Frederic
    Coudert, David
    Perennes, Stephane
    ALGORITHMS - ESA 2013, 2013, 8125 : 289 - 300
  • [50] A Compact 8 × 8 Butler Matrix Based on Folded Structure with Vertical Transition
    Chen, Hui
    Chu, Hui
    Asia-Pacific Microwave Conference Proceedings, APMC, 2022, 2022-November : 791 - 793