The Star-Structure Connectivity and Star-Substructure Connectivity of Hypercubes and Folded Hypercubes

被引:6
|
作者
Ba, Lina [1 ]
Zhang, Heping [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
来源
COMPUTER JOURNAL | 2022年 / 65卷 / 12期
关键词
structure connectivity; substructure connectivity; star graph; hypercube; folded hypercube; STRUCTURE FAULT-TOLERANCE; EXTRACONNECTIVITY;
D O I
10.1093/comjnl/bxab133
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
As a generalization of vertex connectivity, for connected graphs G and T, the T-structure connectivity kappa (G; T) (resp. T-substructure connectivity kappa(s) (G;T)) of G is the minimum cardinality of a set of subgraphs F of G that each is isomorphic to T (resp. to a connected subgraph of T) so that G - F is disconnected. For n-dimensional hypercube Q(n), Lin et al. showed kappa (Q(n); K-1,K-r) = kappa(s)(Q(n); K-1,K-r) = inverted right perpendicularn/2inverted left perpendicular and kappa (Q(n); Ki,r) = kappa(s)(Qn ; Ki,r) = 51 for 2 <= r <= 3 and n >= 3 (Lin, C.-K., Zhang, L.-L., Fan, J.-X. and Wang, D.-J. (2016) Structure connectivity and substructure connectivity of hypercubes. Theor. Comput. Sci., 634, 97-107). Sabir et al. obtained that kappa(Q(n); K-1,K-4) = kappa(s) (Q(n); K-1,K-4) = inverted right perpendicularn/2inverted left perpendicular for n >= 6 and for n-dimensional folded hypercube FQ(n), kappa(FQ(n); K-1,K-1) = kappa(s) (FQ(n); K-1,K-1) = n, kappa(FQ(n); K-1,K-r) = kappa(s)(FQ(n); K-1,K-r) = inverted right perpendicularn+1/2inverted left perpendicular with 2 <= r <= 3 and n >= 7 (Sabir, E. and Meng, J.(2018) Structure fault tolerance of hypercubes and folded hypercubes. Theor. Comput. Sci., 711, 44-55). They proposed an open problem of determining K-1,K- r-structure connectivity of Q(n) and FQ(n) for general r. In this paper, we obtain that for each integer r >= 2, kappa(Q(n); K-1,K-r) = kappa(s)(Q(n); K-1,K-r) = inverted right perpendicularn/2inverted left perpendicular and kappa(FQ(n); K-1,K-r) = kappa(s)(FQ(n); K-1,K-r) = inverted right perpendicularnn+1/2inverted left perpendicular for all integers n larger than r in quare scale. For 4 <= r <= 6, we separately confirm the above result holds for Q n in the remaining cases.
引用
收藏
页码:3156 / 3166
页数:11
相关论文
共 50 条
  • [1] Star-structure connectivity of folded hypercubes and augmented cubes
    Lina Ba
    Hailun Wu
    Heping Zhang
    The Journal of Supercomputing, 2023, 79 : 3257 - 3276
  • [2] Star-structure connectivity of folded hypercubes and augmented cubes
    Ba, Lina
    Wu, Hailun
    Zhang, Heping
    JOURNAL OF SUPERCOMPUTING, 2023, 79 (03): : 3257 - 3276
  • [3] Correction to: Star-structure connectivity of folded hypercubes and augmented cubes
    Lina Ba
    Hailun Wu
    Heping Zhang
    The Journal of Supercomputing, 2023, 79 : 5828 - 5828
  • [4] Structure connectivity and substructure connectivity of hypercubes
    Lin, Cheng-Kuan
    Zhang, Lili
    Fan, Jianxi
    Wang, Dajin
    THEORETICAL COMPUTER SCIENCE, 2016, 634 : 97 - 107
  • [5] Structure connectivity and substructure connectivity of twisted hypercubes
    Li, Dong
    Hu, Xiaolan
    Liu, Huiqing
    THEORETICAL COMPUTER SCIENCE, 2019, 796 : 169 - 179
  • [6] On Restricted Connectivity and Extra Connectivity of Hypercubes and Folded Hypercubes
    徐俊明
    朱强
    侯新民
    周涛
    Journal of Shanghai Jiaotong University, 2005, (02) : 203 - 207
  • [7] Structure and Substructure Connectivity of Balanced Hypercubes
    Huazhong Lü
    Tingzeng Wu
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 2659 - 2672
  • [8] Structure and Substructure Connectivity of Balanced Hypercubes
    Lu, Huazhong
    Wu, Tingzeng
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (03) : 2659 - 2672
  • [9] Star-structure connectivity of folded hypercubes and augmented cubes (Sept, 10.1007/s11227-022-04758-z, 2022)
    Ba, Lina
    Wu, Hailun
    Zhang, Heping
    JOURNAL OF SUPERCOMPUTING, 2023, 79 (05): : 5828 - 5828
  • [10] Conditional connectivity of folded hypercubes
    Zhao, Shuli
    Yang, Weihua
    DISCRETE APPLIED MATHEMATICS, 2019, 257 : 388 - 392