Star-structure connectivity of folded hypercubes and augmented cubes

被引:0
|
作者
Lina Ba
Hailun Wu
Heping Zhang
机构
[1] Lanzhou University,School of Mathematics and Statistics
来源
关键词
Interconnection network; Structure connectivity; Star; Folded hypercube; Augmented cube;
D O I
暂无
中图分类号
学科分类号
摘要
The connectivity is an important parameter to evaluate the fault-tolerance of a network. As a generalization, structure connectivity and substructure connectivity of graphs were proposed. For connected graphs G and H, the H-structure connectivity κ(G;H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa (G;\; H)$$\end{document} (resp. H-substructure connectivity κs(G;H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa ^{s}(G;\; H)$$\end{document}) of G is the minimum cardinality of a set of subgraphs F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} of G that each is isomorphic to H (resp. a connected subgraph of H) so that G-F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G- \mathcal {F}$$\end{document} is disconnected or the singleton. In this paper, we compute the star (K1,m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1,m}$$\end{document})-structure connectivity of n-dimensional folded hypercubes FQn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$FQ_{n}$$\end{document} and augmented cubes AQn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$AQ_{n}$$\end{document}, which are popular variants of n-dimensional hypercubes Qn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_n$$\end{document} as attractive interconnection network prototypes for multiple processor systems. By a large component approach, we obtain that κ(FQn;K1,m)=κs(FQn;K1,m)=⌈n+12⌉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa (FQ_{n};\;K_{1,m})=\kappa ^{s}(FQ_{n};\;K_{1,m})=\lceil \frac{n+1}{2}\rceil$$\end{document} for 2⩽m⩽n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\leqslant m\leqslant n-1$$\end{document}, n⩾7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\geqslant 7$$\end{document} and κ(AQn;K1,m)=κs(AQn;K1,m)=⌈n-12⌉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa (AQ_{n};\;K_{1,m})=\kappa ^{s}(AQ_{n};\;K_{1,m})=\lceil \frac{n-1}{2}\rceil$$\end{document} for 4⩽m⩽3n-154\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4\leqslant m\leqslant \frac{3n-15}{4}$$\end{document}, which much improve some known results with very restricted m.
引用
收藏
页码:3257 / 3276
页数:19
相关论文
共 50 条
  • [21] The g-faulty-block connectivity of folded hypercubes
    Zhu, Bo
    Zhang, Shumin
    Zou, Jinyu
    Ye, Chengfu
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (09): : 12512 - 12526
  • [22] A note on "The super connectivity of augmented cubes"
    Ma, Meijie
    Tan, Xuegong
    Xu, Jun-Ming
    Liu, Guizhen
    INFORMATION PROCESSING LETTERS, 2009, 109 (12) : 592 - 593
  • [23] Strong Menger Connectivity of Folded Hypercubes with Faulty Subcube
    Ma, Meijie
    Guo, Chaoming
    Li, Xiang-Jun
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2023, 34 (05) : 443 - 451
  • [24] Strong Menger connectivity with conditional faults of folded hypercubes
    Yang, Weihua
    Zhao, Shuli
    Zhang, Shurong
    INFORMATION PROCESSING LETTERS, 2017, 125 : 30 - 34
  • [25] Maximally Local Connectivity on Augmented Cubes
    Chen, Y-Chuang
    Chen, Meng-Hung
    Tan, Jimmy J. M.
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, PROCEEDINGS, 2009, 5574 : 121 - +
  • [26] Augmented cubes and its connectivity numbers
    Dündar, P
    NEURAL NETWORK WORLD, 2005, 15 (01) : 1 - 8
  • [27] Super Spanning Connectivity of Augmented Cubes
    Lin, Cheng-Kuan
    Ho, Tung-Yang
    Tan, Jimmy J. M.
    Hsu, Lih-Hsing
    ARS COMBINATORIA, 2012, 104 : 161 - 177
  • [28] Structure connectivity and substructure connectivity of hypercubes
    Lin, Cheng-Kuan
    Zhang, Lili
    Fan, Jianxi
    Wang, Dajin
    THEORETICAL COMPUTER SCIENCE, 2016, 634 : 97 - 107
  • [29] Hyper star structure connectivity of hierarchical folded cubic networks
    Guo, Huimei
    Hao, Rong-Xia
    Chang, Jou-Ming
    Kwon, Young Soo
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (10): : 14224 - 14241
  • [30] The g-extra connectivity of folded crossed cubes
    Guo, Huimei
    Sabir, Eminjan
    Mamut, Aygul
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2022, 166 : 139 - 146