Star-structure connectivity of folded hypercubes and augmented cubes

被引:0
|
作者
Lina Ba
Hailun Wu
Heping Zhang
机构
[1] Lanzhou University,School of Mathematics and Statistics
来源
关键词
Interconnection network; Structure connectivity; Star; Folded hypercube; Augmented cube;
D O I
暂无
中图分类号
学科分类号
摘要
The connectivity is an important parameter to evaluate the fault-tolerance of a network. As a generalization, structure connectivity and substructure connectivity of graphs were proposed. For connected graphs G and H, the H-structure connectivity κ(G;H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa (G;\; H)$$\end{document} (resp. H-substructure connectivity κs(G;H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa ^{s}(G;\; H)$$\end{document}) of G is the minimum cardinality of a set of subgraphs F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} of G that each is isomorphic to H (resp. a connected subgraph of H) so that G-F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G- \mathcal {F}$$\end{document} is disconnected or the singleton. In this paper, we compute the star (K1,m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1,m}$$\end{document})-structure connectivity of n-dimensional folded hypercubes FQn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$FQ_{n}$$\end{document} and augmented cubes AQn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$AQ_{n}$$\end{document}, which are popular variants of n-dimensional hypercubes Qn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_n$$\end{document} as attractive interconnection network prototypes for multiple processor systems. By a large component approach, we obtain that κ(FQn;K1,m)=κs(FQn;K1,m)=⌈n+12⌉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa (FQ_{n};\;K_{1,m})=\kappa ^{s}(FQ_{n};\;K_{1,m})=\lceil \frac{n+1}{2}\rceil$$\end{document} for 2⩽m⩽n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\leqslant m\leqslant n-1$$\end{document}, n⩾7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\geqslant 7$$\end{document} and κ(AQn;K1,m)=κs(AQn;K1,m)=⌈n-12⌉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa (AQ_{n};\;K_{1,m})=\kappa ^{s}(AQ_{n};\;K_{1,m})=\lceil \frac{n-1}{2}\rceil$$\end{document} for 4⩽m⩽3n-154\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4\leqslant m\leqslant \frac{3n-15}{4}$$\end{document}, which much improve some known results with very restricted m.
引用
收藏
页码:3257 / 3276
页数:19
相关论文
共 50 条
  • [31] On reliability of the folded hypercubes in terms of the extra edge-connectivity
    Yang, Weihua
    Li, Hao
    INFORMATION SCIENCES, 2014, 272 : 238 - 243
  • [32] On the g-extra connectivity of augmented cubes
    Cheng, Eddie
    Liptak, Laszlo
    Qiu, Ke
    Shen, Zhizhang
    Vangipuram, Abhishek
    THEORETICAL COMPUTER SCIENCE, 2023, 970
  • [33] Structure connectivity and substructure connectivity of twisted hypercubes
    Li, Dong
    Hu, Xiaolan
    Liu, Huiqing
    THEORETICAL COMPUTER SCIENCE, 2019, 796 : 169 - 179
  • [34] On 3-Extra Connectivity and 3-Extra Edge Connectivity of Folded Hypercubes
    Chang, Nai-Wen
    Tsai, Cheng-Yen
    Hsieh, Sun-Yuan
    IEEE TRANSACTIONS ON COMPUTERS, 2014, 63 (06) : 1593 - 1599
  • [35] Clustering for heterogeneous information networks with extended star-structure
    Mei, Jian-Ping
    Lv, Huajiang
    Yang, Lianghuai
    Li, Yanjun
    DATA MINING AND KNOWLEDGE DISCOVERY, 2019, 33 (04) : 1059 - 1087
  • [36] Connectivity, super connectivity and generalized 3-connectivity of folded divide-and-swap cubes
    Zhao, Shu-Li
    Chang, Jou-Ming
    INFORMATION PROCESSING LETTERS, 2023, 182
  • [37] Hamiltonian-connectivity and strongly Hamiltonian-laceability of folded hypercubes
    Hsieh, Sun-Yuan
    Kuo, Che-Nan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 53 (07) : 1040 - 1044
  • [38] Pendant 3-tree-connectivity of augmented cubes
    Mane, S. A.
    Kandekar, S. A.
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (13): : 19395 - 19413
  • [39] The Path-Structure Connectivity of Augmented k-ary n-cubes
    Ba, Lina
    Zhang, Yaxian
    Zhang, Heping
    COMPUTER JOURNAL, 2023, 66 (12): : 3119 - 3128
  • [40] Structure and Substructure Connectivity of Balanced Hypercubes
    Huazhong Lü
    Tingzeng Wu
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 2659 - 2672