Hardy-Type Inequalities for the Carnot–Carathéodory Distance in the Heisenberg Group

被引:0
|
作者
Valentina Franceschi
Dario Prandi
机构
[1] Laboratoire Jacques-Louis Lions,
[2] Sorbonne Université,undefined
[3] Université de Paris,undefined
[4] Inria,undefined
[5] CNRS,undefined
[6] Université Paris-Saclay,undefined
[7] CNRS,undefined
[8] CentraleSupélec,undefined
[9] Laboratoire des Signaux et Systèmes,undefined
来源
关键词
Heisenberg group; Hardy-type inequalities; Carnot–Carathéodory distance; 35R03; 35A23; 53C17;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study Hardy inequalities in the Heisenberg group Hn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}^n$$\end{document}, with respect to the Carnot–Carathéodory distance δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document} from the origin. We firstly show that, letting Q be the homogenous dimension, the optimal constant in the (unweighted) Hardy inequality is strictly smaller than n2=(Q-2)2/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^2 = (Q-2)^2/4$$\end{document}. Then, we prove that, independently of n, the Heisenberg group does not support a radial Hardy inequality, i.e., a Hardy inequality where the gradient term is replaced by its projection along ∇Hδ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla \!_{\mathbb {H}}\delta $$\end{document}. This is in stark contrast with the Euclidean case, where the radial Hardy inequality is equivalent to the standard one, and has the same constant. Motivated by these results, we consider Hardy inequalities for non-radial directions, i.e., directions tangent to the Carnot–Carathéodory balls. In particular, we show that the associated constant is bounded on homogeneous cones CΣ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_\Sigma $$\end{document} with base Σ⊂S2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma \subset {\mathbb {S}}^{2n}$$\end{document}, even when Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document} degenerates to a point. This is a genuinely sub-Riemannian behavior, as such constant is well known to explode for homogeneous cones in the Euclidean space.
引用
收藏
页码:2455 / 2480
页数:25
相关论文
共 50 条
  • [1] Hardy-Type Inequalities for the Carnot-Caratheodory Distance in the Heisenberg Group
    Franceschi, Valentina
    Prandi, Dario
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (03) : 2455 - 2480
  • [2] Hardy–Sobolev Type Inequalities with Sharp Constants in Carnot–Carathéodory Spaces
    Donatella Danielli
    Nicola Garofalo
    Nguyen Cong Phuc
    Potential Analysis, 2011, 34 : 223 - 242
  • [3] HARDY TYPE INEQUALITIES RELATED TO CARNOT-CARATHEODORY DISTANCE ON THE HEISENBERG GROUP
    Yang, Qiao-Hua
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (01) : 351 - 362
  • [4] Hardy-Sobolev Type Inequalities with Sharp Constants in Carnot-Carath,odory Spaces
    Danielli, Donatella
    Garofalo, Nicola
    Phuc, Nguyen Cong
    POTENTIAL ANALYSIS, 2011, 34 (03) : 223 - 242
  • [5] Carnot-carathéodory homogeneous cone condition and carnot-carathéodory balls in heisenberg groups
    Belykh A.V.
    Greshnov A.V.
    Journal of Mathematical Sciences, 2013, 195 (6) : 779 - 790
  • [6] Hardy-type inequalities on a half-space in the Heisenberg group
    Liu, Heng-Xing
    Luan, Jing-Wen
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [7] Hardy-type inequalities on a half-space in the Heisenberg group
    Heng-Xing Liu
    Jing-Wen Luan
    Journal of Inequalities and Applications, 2013
  • [8] The Carnot-Carathéodory Distance and the Infinite Laplacian
    Thomas Bieske
    Federica Dragoni
    Juan Manfredi
    Journal of Geometric Analysis, 2009, 19 : 737 - 754
  • [9] Some Weighted Hardy-Type Inequalities on Anisotropic Heisenberg Groups
    Lian, Bao-Sheng
    Yang, Qiao-Hua
    Yang, Fen
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2011,
  • [10] Some Weighted Hardy-Type Inequalities on Anisotropic Heisenberg Groups
    Bao-Sheng Lian
    Qiao-Hua Yang
    Fen Yang
    Journal of Inequalities and Applications, 2011