Hardy-Type Inequalities for the Carnot–Carathéodory Distance in the Heisenberg Group

被引:0
|
作者
Valentina Franceschi
Dario Prandi
机构
[1] Laboratoire Jacques-Louis Lions,
[2] Sorbonne Université,undefined
[3] Université de Paris,undefined
[4] Inria,undefined
[5] CNRS,undefined
[6] Université Paris-Saclay,undefined
[7] CNRS,undefined
[8] CentraleSupélec,undefined
[9] Laboratoire des Signaux et Systèmes,undefined
来源
关键词
Heisenberg group; Hardy-type inequalities; Carnot–Carathéodory distance; 35R03; 35A23; 53C17;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study Hardy inequalities in the Heisenberg group Hn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}^n$$\end{document}, with respect to the Carnot–Carathéodory distance δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document} from the origin. We firstly show that, letting Q be the homogenous dimension, the optimal constant in the (unweighted) Hardy inequality is strictly smaller than n2=(Q-2)2/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^2 = (Q-2)^2/4$$\end{document}. Then, we prove that, independently of n, the Heisenberg group does not support a radial Hardy inequality, i.e., a Hardy inequality where the gradient term is replaced by its projection along ∇Hδ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla \!_{\mathbb {H}}\delta $$\end{document}. This is in stark contrast with the Euclidean case, where the radial Hardy inequality is equivalent to the standard one, and has the same constant. Motivated by these results, we consider Hardy inequalities for non-radial directions, i.e., directions tangent to the Carnot–Carathéodory balls. In particular, we show that the associated constant is bounded on homogeneous cones CΣ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_\Sigma $$\end{document} with base Σ⊂S2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma \subset {\mathbb {S}}^{2n}$$\end{document}, even when Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document} degenerates to a point. This is a genuinely sub-Riemannian behavior, as such constant is well known to explode for homogeneous cones in the Euclidean space.
引用
收藏
页码:2455 / 2480
页数:25
相关论文
共 50 条
  • [41] On a scale of Hardy-type integral inequalities
    Dubinskii, Yu. A.
    DOKLADY MATHEMATICS, 2010, 81 (01) : 111 - 114
  • [42] New Hardy-type integral inequalities
    Manna, Atanu
    ACTA SCIENTIARUM MATHEMATICARUM, 2020, 86 (3-4): : 467 - 491
  • [43] On a new class of Hardy-type inequalities
    EO Adeleke
    A Čižmešija
    JA Oguntuase
    L-E Persson
    D Pokaz
    Journal of Inequalities and Applications, 2012
  • [44] A new approach to Hardy-type inequalities
    Osekowski, Adam
    ARCHIV DER MATHEMATIK, 2015, 104 (02) : 165 - 176
  • [45] ITERATED DISCRETE HARDY-TYPE INEQUALITIES
    Zhangabergenova, N.
    Temirkhanova, A.
    EURASIAN MATHEMATICAL JOURNAL, 2023, 14 (01): : 81 - 95
  • [46] On a scale of Hardy-type integral inequalities
    Yu. A. Dubinskii
    Doklady Mathematics, 2010, 81 : 111 - 114
  • [47] A new approach to Hardy-type inequalities
    Adam Osȩkowski
    Archiv der Mathematik, 2015, 104 : 165 - 176
  • [48] On weighted iterated Hardy-type inequalities
    Rza Mustafayev
    Positivity, 2018, 22 : 275 - 299
  • [49] The optimal constant in Hardy-type inequalities
    Mu-Fa Chen
    Acta Mathematica Sinica, English Series, 2015, 31 : 731 - 754
  • [50] SOME REFINEMENTS OF HARDY-TYPE INEQUALITIES
    Ciurdariu, Loredana
    JOURNAL OF SCIENCE AND ARTS, 2016, (02): : 129 - 140