Hardy-Type Inequalities for the Carnot–Carathéodory Distance in the Heisenberg Group

被引:0
|
作者
Valentina Franceschi
Dario Prandi
机构
[1] Laboratoire Jacques-Louis Lions,
[2] Sorbonne Université,undefined
[3] Université de Paris,undefined
[4] Inria,undefined
[5] CNRS,undefined
[6] Université Paris-Saclay,undefined
[7] CNRS,undefined
[8] CentraleSupélec,undefined
[9] Laboratoire des Signaux et Systèmes,undefined
来源
关键词
Heisenberg group; Hardy-type inequalities; Carnot–Carathéodory distance; 35R03; 35A23; 53C17;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study Hardy inequalities in the Heisenberg group Hn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}^n$$\end{document}, with respect to the Carnot–Carathéodory distance δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document} from the origin. We firstly show that, letting Q be the homogenous dimension, the optimal constant in the (unweighted) Hardy inequality is strictly smaller than n2=(Q-2)2/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^2 = (Q-2)^2/4$$\end{document}. Then, we prove that, independently of n, the Heisenberg group does not support a radial Hardy inequality, i.e., a Hardy inequality where the gradient term is replaced by its projection along ∇Hδ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla \!_{\mathbb {H}}\delta $$\end{document}. This is in stark contrast with the Euclidean case, where the radial Hardy inequality is equivalent to the standard one, and has the same constant. Motivated by these results, we consider Hardy inequalities for non-radial directions, i.e., directions tangent to the Carnot–Carathéodory balls. In particular, we show that the associated constant is bounded on homogeneous cones CΣ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_\Sigma $$\end{document} with base Σ⊂S2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma \subset {\mathbb {S}}^{2n}$$\end{document}, even when Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document} degenerates to a point. This is a genuinely sub-Riemannian behavior, as such constant is well known to explode for homogeneous cones in the Euclidean space.
引用
收藏
页码:2455 / 2480
页数:25
相关论文
共 50 条
  • [21] Refinements of Hardy-Type Inequalities
    Tian, Jingfeng
    Zhou, Yang-Xiu
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [22] Bilateral Hardy-type inequalities
    Mu Fa Chen
    Acta Mathematica Sinica, English Series, 2013, 29 : 1 - 32
  • [23] Some Hardy-type inequalities
    Cheung, WS
    Hanjs, Z
    Pecaric, J
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 250 (02) : 621 - 634
  • [24] Bilateral Hardy-type Inequalities
    Mu Fa CHEN
    Acta Mathematica Sinica,English Series, 2013, (01) : 1 - 32
  • [25] Bilateral Hardy-type Inequalities
    Mu Fa CHEN
    Acta Mathematica Sinica, 2013, 29 (01) : 1 - 32
  • [26] Bilateral Hardy-type inequalities
    Chen, Mu Fa
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2013, 29 (01) : 1 - 32
  • [27] ON WEIGHTED HARDY-TYPE INEQUALITIES
    Chuah, Chian Yeong
    Gesztesy, Fritz
    Littlejohn, Lance L.
    Mei, Tao
    Michael, Isaac
    Pang, Michael M. H.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2020, 23 (02): : 625 - 646
  • [28] Discrete Hardy-type Inequalities
    Liao, Zhong-Wei
    ADVANCED NONLINEAR STUDIES, 2015, 15 (04) : 805 - 834
  • [29] Ahlfors type estimates for perimeter measures in Carnot-Carathéodory spaces
    Luca Capogna
    Nicola Garofalo
    The Journal of Geometric Analysis, 2006, 16 : 455 - 497
  • [30] Bilateral Hardy-type Inequalities
    Mu Fa CHEN
    数学学报, 2013, 56 (02) : 289 - 289