Hardy-Sobolev Type Inequalities with Sharp Constants in Carnot-Carath,odory Spaces

被引:26
|
作者
Danielli, Donatella [1 ]
Garofalo, Nicola [1 ]
Phuc, Nguyen Cong [2 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[2] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
基金
美国国家科学基金会;
关键词
Hardy type inequalities; Carnot groups; Carnot-Carathcodory spaces; Horizontal p-Laplacian; CARNOT-CARATHEODORY SPACES; HEISENBERG-GROUP; VECTOR-FIELDS; SUBELLIPTIC EQUATIONS; FUNDAMENTAL-SOLUTIONS; UNIQUE CONTINUATION; HEAT-EQUATION; OPERATORS; THEOREMS; SURFACE;
D O I
10.1007/s11118-010-9190-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a generalization with sharp constants of a classical inequality due to Hardy to Carnot groups of arbitrary step, or more general Carnot-Carath,odory spaces associated with a system of vector fields of Hormander type. Under a suitable additional assumption (see Eq. 1.6 below) we are able to extend such result to the nonlinear case p not equal 2. We also obtain a sharp inequality of Hardy-Sobolev type.
引用
收藏
页码:223 / 242
页数:20
相关论文
共 50 条