Carnot-carathéodory homogeneous cone condition and carnot-carathéodory balls in heisenberg groups

被引:0
|
作者
Belykh A.V. [1 ]
Greshnov A.V. [1 ,2 ]
机构
[1] Novosibirsk State University, 2, ul. Pirogova, Novosibirsk
[2] Sobolev Institute of Mathematics SB RAS, 4, pr. Akad, Koptyuga
基金
俄罗斯基础研究基金会;
关键词
Short Path; Heisenberg Group; Parametrized Curve; Cone Condition; Carnot Group;
D O I
10.1007/s10958-013-1617-x
中图分类号
学科分类号
摘要
We study properties of extremals of the variational problem about the shortest paths in the Carnot-Carathéodory metric on Heisenberg groups. We prove that the Carnot-Carathéodory balls in Heisenberg groups satisfy the Carnot-Carathéodory homogeneous cone condition. Bibliography: 17 titles. © 2013 Springer Science+Business Media New York.
引用
收藏
页码:779 / 790
页数:11
相关论文
共 50 条
  • [1] On small Carnot-Carathéodory spheres
    Yu. Baryshnikov
    Geometric & Functional Analysis GAFA, 2000, 10 : 259 - 265
  • [2] Surface measures in Carnot-Carathéodory spaces
    Roberto Monti
    Francesco Serra Cassano
    Calculus of Variations and Partial Differential Equations, 2001, 13 : 339 - 376
  • [3] The Carnot-Carathéodory Distance and the Infinite Laplacian
    Thomas Bieske
    Federica Dragoni
    Juan Manfredi
    Journal of Geometric Analysis, 2009, 19 : 737 - 754
  • [4] Mean Value Property and Harmonicity on Carnot-Carathéodory Groups
    Tomasz Adamowicz
    Ben Warhurst
    Potential Analysis, 2020, 52 : 497 - 525
  • [5] On the Cheeger Inequality in Carnot-Carathéodory Spaces
    Kluitenberg, Martijn
    JOURNAL OF GEOMETRIC ANALYSIS, 2025, 35 (03)
  • [6] Lipschitz Carnot-Carathéodory Structures and their Limits
    Gioacchino Antonelli
    Enrico Le Donne
    Sebastiano Nicolussi Golo
    Journal of Dynamical and Control Systems, 2023, 29 : 805 - 854
  • [7] Tangent cone to a regular quasimetric Carnot-Carathéodory space
    S. V. Selivanova
    Doklady Mathematics, 2009, 79 : 265 - 269
  • [8] Tangent cone to a regular quasimetric Carnot-Carath,odory space
    Selivanova, S. V.
    DOKLADY MATHEMATICS, 2009, 79 (02) : 265 - 269
  • [9] A new approach to investigation of Carnot-Carathéodory geometry
    M. B. Karmanova
    Doklady Mathematics, 2010, 82 : 746 - 750
  • [10] Existence of tangent lines to Carnot-Carath,odory geodesics
    Monti, Roberto
    Pigati, Alessandro
    Vittone, Davide
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (03)