Signal mixture estimation for degenerate heavy Higgses using a deep neural network

被引:0
|
作者
Anders Kvellestad
Steffen Maeland
Inga Strümke
机构
[1] University of Oslo,Department of Physics
[2] Imperial College London,Blackett Laboratory, Department of Physics
[3] University of Bergen,Department of Physics and Technology
来源
The European Physical Journal C | 2018年 / 78卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
If a new signal is established in future LHC data, a next question will be to determine the signal composition, in particular whether the signal is due to multiple near-degenerate states. We investigate the performance of a deep learning approach to signal mixture estimation for the challenging scenario of a ditau signal coming from a pair of degenerate Higgs bosons of opposite CP charge. This constitutes a parameter estimation problem for a mixture model with highly overlapping features. We use an unbinned maximum likelihood fit to a neural network output, and compare the results to mixture estimation via a fit to a single kinematic variable. For our benchmark scenarios we find a ∼20%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim 20\%$$\end{document} improvement in the estimate uncertainty.
引用
收藏
相关论文
共 50 条
  • [41] Image operator forensics and sequence estimation using robust deep neural network
    Saurabh Agarwal
    Ki-Hyun Jung
    Multimedia Tools and Applications, 2024, 83 : 47431 - 47454
  • [42] Remote Atrial Fibrillation Burden Estimation Using Deep Recurrent Neural Network
    Chocron, Armand
    Oster, Julien
    Biton, Shany
    Mandel, Franck
    Elbaz, Meyer
    Zeevi, Yehoshua Y.
    Behar, Joachim A.
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2021, 68 (08) : 2447 - 2455
  • [43] A Framework for Chili Fruits Maturity Estimation using Deep Convolutional Neural Network
    Zainudin, M. N. Shah
    Hussin, Najihah
    Saad, W. H. Mohd
    Radzi, S. Mohd
    Noh, Z. Mohd
    Sulaiman, N. A.
    Razak, M. S. J. A.
    PRZEGLAD ELEKTROTECHNICZNY, 2021, 97 (12): : 77 - 81
  • [44] Radio propagation prediction using deep neural network and building occupancy estimation
    Inoue, Kazuya
    Ichige, Koichi
    Nagao, Tatsuya
    Hayashi, Takahiro
    IEICE COMMUNICATIONS EXPRESS, 2020, 9 (10): : 506 - 511
  • [45] AUTOMATIC CHORD ESTIMATION ON SEVENTHSBASS CHORD VOCABULARY USING DEEP NEURAL NETWORK
    Deng, Junqi
    Kwok, Yu-Kwong
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 261 - 265
  • [46] Estimation Method for Magnetization Distribution in Permanent Magnet Using Deep Neural Network
    Sasaki, Hidenori
    Takasu, Daichi
    Nakamura, Narichika
    Okamoto, Yoshifumi
    TWENTIETH BIENNIAL IEEE CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION (IEEE CEFC 2022), 2022,
  • [47] Magnitude Estimation for Earthquake Early Warning Using a Deep Convolutional Neural Network
    Zhu, Jingbao
    Li, Shanyou
    Song, Jindong
    Wang, Yuan
    FRONTIERS IN EARTH SCIENCE, 2021, 9
  • [48] RGB-D CAMERA POSE ESTIMATION USING DEEP NEURAL NETWORK
    Guo, Fei
    He, Yifeng
    Guan, Ling
    2017 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2017), 2017, : 408 - 412
  • [49] VISUAL SALIENCE AND PRIORITY ESTIMATION FOR LOCOMOTION USING A DEEP CONVOLUTIONAL NEURAL NETWORK
    Anantrasirichai, N.
    Gilchrist, Iain D.
    Bull, David R.
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 1599 - 1603
  • [50] Probabilistic state estimation in district heating grids using deep neural network
    Yi, Gaowei
    Zhuang, Xinlin
    Li, Yan
    SUSTAINABLE ENERGY GRIDS & NETWORKS, 2024, 38