Signal mixture estimation for degenerate heavy Higgses using a deep neural network

被引:0
|
作者
Anders Kvellestad
Steffen Maeland
Inga Strümke
机构
[1] University of Oslo,Department of Physics
[2] Imperial College London,Blackett Laboratory, Department of Physics
[3] University of Bergen,Department of Physics and Technology
来源
The European Physical Journal C | 2018年 / 78卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
If a new signal is established in future LHC data, a next question will be to determine the signal composition, in particular whether the signal is due to multiple near-degenerate states. We investigate the performance of a deep learning approach to signal mixture estimation for the challenging scenario of a ditau signal coming from a pair of degenerate Higgs bosons of opposite CP charge. This constitutes a parameter estimation problem for a mixture model with highly overlapping features. We use an unbinned maximum likelihood fit to a neural network output, and compare the results to mixture estimation via a fit to a single kinematic variable. For our benchmark scenarios we find a ∼20%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim 20\%$$\end{document} improvement in the estimate uncertainty.
引用
收藏
相关论文
共 50 条
  • [21] Channel estimation enhancement in vehicular communication using deep neural network
    Shukla, Devesh
    Prakash, Arun
    Tripathi, Rajeev
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2025, 50 (01):
  • [22] Ejection Fraction estimation using deep semantic segmentation neural network
    Md. Golam Rabiul Alam
    Abde Musavvir Khan
    Myesha Farid Shejuty
    Syed Ibna Zubayear
    Md. Nafis Shariar
    Meteb Altaf
    Mohammad Mehedi Hassan
    Salman A. AlQahtani
    Ahmed Alsanad
    The Journal of Supercomputing, 2023, 79 : 27 - 50
  • [23] A neural network method for mixture estimation for vegetation mapping
    Carpenter, GA
    Gopal, S
    Macomber, S
    Martens, S
    Woodcock, CE
    REMOTE SENSING OF ENVIRONMENT, 1999, 70 (02) : 138 - 152
  • [24] A neural network method for mixture estimation for vegetation mapping
    Ctr. Adaptive Syst. Dept. Cogn. N., Boston University, Boston, MA, United States
    不详
    Remote Sens. Environ., 2 (138-152):
  • [25] Estimation of Heavy Metals Contamination in the Soil of Zaafaraniya City Using the Neural Network
    Ghazi, Farah F.
    IBN AL-HAITHAM FIRST INTERNATIONAL SCIENTIFIC CONFERENCE, 2018, 1003
  • [26] Siamese based deep neural network for ADHD detection using EEG signal
    Latifi, Behnam
    Amini, Ali
    Motie Nasrabadi, Ali
    Computers in Biology and Medicine, 2024, 182
  • [27] Mental Stress Assessment Using PPG Signal a Deep Neural Network Approach
    Kalra, Prerita
    Sharma, Vivek
    IETE JOURNAL OF RESEARCH, 2023, 69 (02) : 879 - 885
  • [28] Abnormality Heartbeat Classification of ECG Signal Using Deep Neural Network and Autoencoder
    Putra, Bayu Wijaya
    Fachrurrozi, Muhammad
    Sanjaya, M. Rudi
    Firdaus
    Muliawati, Anita
    Mukti, Akhmad Noviar Satria
    Nurmaini, Siti
    2019 INTERNATIONAL CONFERENCE ON INFORMATICS, MULTIMEDIA, CYBER AND INFORMATION SYSTEM (ICIMCIS), 2019, : 213 - 217
  • [29] A Deep Neural Network-Based Pain Classifier Using a Photoplethysmography Signal
    Lim, Hyunjun
    Kim, Byeongnam
    Noh, Gyu-Jeong
    Yoo, Sun K.
    SENSORS, 2019, 19 (02)
  • [30] Unwrapping SAR interferograms with localized subsidence signal using deep neural network
    Wu, Zhipeng
    Wang, Teng
    Wang, Robert
    13TH EUROPEAN CONFERENCE ON SYNTHETIC APERTURE RADAR, EUSAR 2021, 2021, : 938 - 942