Signal mixture estimation for degenerate heavy Higgses using a deep neural network

被引:0
|
作者
Anders Kvellestad
Steffen Maeland
Inga Strümke
机构
[1] University of Oslo,Department of Physics
[2] Imperial College London,Blackett Laboratory, Department of Physics
[3] University of Bergen,Department of Physics and Technology
来源
The European Physical Journal C | 2018年 / 78卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
If a new signal is established in future LHC data, a next question will be to determine the signal composition, in particular whether the signal is due to multiple near-degenerate states. We investigate the performance of a deep learning approach to signal mixture estimation for the challenging scenario of a ditau signal coming from a pair of degenerate Higgs bosons of opposite CP charge. This constitutes a parameter estimation problem for a mixture model with highly overlapping features. We use an unbinned maximum likelihood fit to a neural network output, and compare the results to mixture estimation via a fit to a single kinematic variable. For our benchmark scenarios we find a ∼20%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim 20\%$$\end{document} improvement in the estimate uncertainty.
引用
收藏
相关论文
共 50 条
  • [31] Motor Imagery EEG Signal Recognition Using Deep Convolution Neural Network
    Xiao, Xiongliang
    Fang, Yuee
    FRONTIERS IN NEUROSCIENCE, 2021, 15
  • [32] Parameter estimation of the exponentially damped sinusoids signal using a specific neural network
    Xiao, Xiuchun
    Lai, Jian-Huang
    Wang, Chang-Dong
    NEUROCOMPUTING, 2014, 143 : 331 - 338
  • [33] Generalized Deep Neural Network Model for Cuffless Blood Pressure Estimation with Photoplethysmogram Signal Only
    Hsu, Yan-Cheng
    Li, Yung-Hui
    Chang, Ching-Chun
    Harfiya, Latifa Nabila
    SENSORS, 2020, 20 (19) : 1 - 18
  • [34] A cascaded approach of group sparse mode decomposition and deep neural network for heart rate estimation using reference signal-less PPG signal
    Pankaj
    Maan, Pratibha
    Kumar, Manjeet
    Kumar, Ashish
    Komaragiri, Rama
    MEASUREMENT, 2025, 246
  • [35] KERNEL ESTIMATION FOR MOTION BLUR REMOVAL USING DEEP CONVOLUTIONAL NEURAL NETWORK
    Lu, Yanan
    Xie, Fengying
    Jiang, Zhiguo
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 3755 - 3759
  • [36] Story Point Estimation Using Issue Reports With Deep Attention Neural Network
    Kassem, Haithem
    Mahar, Khaled
    Saad, Amani A.
    E-INFORMATICA SOFTWARE ENGINEERING JOURNAL, 2023, 17 (01)
  • [37] Layered Optical Flow Estimation Using a Deep Neural Network with a Soft Mask
    Zhang, Xi
    Ma, Di
    Ouyang, Xu
    Jiang, Shanshan
    Gan, Lin
    Agam, Gady
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 1170 - 1176
  • [38] Simultaneous Estimation of Wall and Object Parameters in TWR Using Deep Neural Network
    Ghorbani, Fardin
    Soleimani, Hossein
    INTERNATIONAL JOURNAL OF ANTENNAS AND PROPAGATION, 2022, 2022
  • [39] Image operator forensics and sequence estimation using robust deep neural network
    Agarwal, Saurabh
    Jung, Ki-Hyun
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (16) : 47431 - 47454
  • [40] An Intelligent Vehicle Price Estimation Approach Using a Deep Neural Network Model
    Alnajim, Thuraya
    Alshahrani, Nouf
    Asiri, Omar
    WORLD ELECTRIC VEHICLE JOURNAL, 2024, 15 (08):