Estimation Method for Magnetization Distribution in Permanent Magnet Using Deep Neural Network

被引:2
|
作者
Sasaki, Hidenori [1 ]
Takasu, Daichi [1 ]
Nakamura, Narichika [1 ]
Okamoto, Yoshifumi [1 ]
机构
[1] Hosei Univ, Dept Elect & Elect Engn, Koganei, Tokyo, Japan
关键词
Biot-Savart low; Deep Learning; Magnetization Estimation; Nd-Fe-B Magnet;
D O I
10.1109/CEFC55061.2022.9940784
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A new estimation method for magnetization distribution (MD) in permanent magnets using a deep neural network (DNN) is proposed. It estimates the physical MD from the measured magnetic flux density distribution. The proposed method overcomes problems of indefiniteness and using a new method of constructing training data that models the realistic MD. The DNN trained on the data calculated by the Biot-Savart method can accurately estimate the MD for measured and untrained data.
引用
收藏
页数:2
相关论文
共 50 条
  • [1] Magnetization Estimation for Permanent Magnet Using Convolutional Neural Network
    Igarashi, Kazuki
    Sasaki, Hidenori
    Shioyama, Masahide
    Okamoto, Yoshifumi
    2024 IEEE 21ST BIENNIAL CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION, CEFC 2024, 2024,
  • [2] Fast Estimation System of Permanent Magnet Magnetization Using 2D-arrayed Hall Sensors Combined with Deep Neural Network
    Shioyama, Masahide
    Okamoto, Yoshifumi
    2024 IEEE 21ST BIENNIAL CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION, CEFC 2024, 2024,
  • [3] Estimation of Magnetization Distribution in Permanent Magnet of Brushless DC Motor
    Ishikawa, Takeo
    Yonetake, Kouki
    Kurita, Nobuyuki
    Tsuchiya, Masahisa
    APPLIED ELECTROMAGNETIC ENGINEERING FOR MAGNETIC, SUPERCONDUCTING AND NANOMATERIALS, 2011, 670 : 360 - +
  • [4] Inverse Estimation Method of Permanent Magnet Magnetization Using No-load Back Electromotive Force of Permanent Magnet Synchronous Motor
    Suzuki H.
    Okamoto Y.
    IEEJ Transactions on Industry Applications, 2024, 144 (04) : 313 - 314
  • [5] Nondestructive Inverse Estimation Method of Permanent Magnet Magnetization Using No-load BEMF of PMSM
    Suzuki, Hajime
    Okamoto, Yoshifumi
    2024 IEEE 21ST BIENNIAL CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION, CEFC 2024, 2024,
  • [6] Fast-Sensing System of Permanent Magnet Magnetization Using Matrix-Arranged Hall Sensors Combined With Deep Neural Network
    Shioyama, Masahide
    Okamoto, Yoshifumi
    IEEE SENSORS LETTERS, 2024, 8 (04) : 1 - 4
  • [7] Permanent Magnet Magnetization State Estimation Using High Frequency Signal Injection
    Fernandez, Daniel
    Reigosa, David
    Guerrero, Juan Manuel
    Zhu, Zi-Qiang
    Briz, Fernando
    2015 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2015, : 3949 - 3956
  • [8] Distribution network distributed state estimation method based on an integrated deep neural network
    Zhang W.
    Fan Y.
    Hou J.
    Song Y.
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2024, 52 (03): : 128 - 140
  • [9] Deep Neural Network for Magnetic Core Loss Estimation using the MagNet Experimental Database
    Shen, Xiaobing
    Wouters, Hans
    Martinez, Wilmar
    2022 24TH EUROPEAN CONFERENCE ON POWER ELECTRONICS AND APPLICATIONS (EPE'22 ECCE EUROPE), 2022,
  • [10] Nondestructive Estimation of Magnetization Distribution in Permanent Magnet Using Quasi-Newton Method Based on 2-D Fourier Series Expansion
    Nakamura, Narichika
    Okamoto, Yoshifumi
    Osanai, Kenta
    Doi, Satoshi
    Aoki, Tetsuya
    Okazaki, Keichi
    IEEE TRANSACTIONS ON MAGNETICS, 2020, 56 (01)