Spherical Lagrangians via ball packings and symplectic cutting

被引:0
|
作者
Matthew Strom Borman
Tian-Jun Li
Weiwei Wu
机构
[1] University of Chicago,
[2] University of Minnesota,undefined
[3] Michigan State University,undefined
来源
Selecta Mathematica | 2014年 / 20卷
关键词
Symplectic manifolds; Symplectic ball packing; Lagrangian knots; Symplectic cutting; Rational manifolds; 53Dxx; 53D35; 53D12;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove the connectedness of symplectic ball packings in the complement of a spherical Lagrangian, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^{2}$$\end{document} or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{RP }^{2}$$\end{document}, in symplectic manifolds that are rational or ruled. Via a symplectic cutting construction, this is a natural extension of McDuff’s connectedness of ball packings in other settings and this result has applications to several different questions: smooth knotting and unknottedness results for spherical Lagrangians, the transitivity of the action of the symplectic Torelli group, classifying Lagrangian isotopy classes in the presence of knotting, and detecting Floer-theoretically essential Lagrangian tori in the del Pezzo surfaces.
引用
收藏
页码:261 / 283
页数:22
相关论文
共 50 条
  • [41] Apollonian circle packings: Number theory II. Spherical and hyperbolic packings
    Nicholas Eriksson
    Jeffrey C. Lagarias
    The Ramanujan Journal, 2007, 14 : 437 - 469
  • [42] Apollonian circle packings: Number theory II. Spherical and hyperbolic packings
    Eriksson, Nicholas
    Lagarias, Jeffrey C.
    RAMANUJAN JOURNAL, 2007, 14 (03): : 437 - 469
  • [43] New upper bounds for spherical codes and packings
    Sardari, Naser Talebizadeh
    Zargar, Masoud
    MATHEMATISCHE ANNALEN, 2024, 389 (04) : 3653 - 3703
  • [44] On non-Abelian symplectic cutting
    Martens, Johan
    Thaddeus, Michael
    TRANSFORMATION GROUPS, 2012, 17 (04) : 1059 - 1084
  • [45] On non-Abelian symplectic cutting
    Johan Martens
    Michael Thaddeus
    Transformation Groups, 2012, 17 : 1059 - 1084
  • [46] AXIAL MOVEMENT OF SPHERICAL PACKINGS IN A MOBILE BED
    TABEI, K
    HASATANI, M
    KURODA, M
    KAGAKU KOGAKU RONBUNSHU, 1988, 14 (01) : 26 - 31
  • [47] Open Gromov-Witten theory on symplectic manifolds and symplectic cutting
    Tehrani, Mohammad Farajzadeh
    ADVANCES IN MATHEMATICS, 2013, 232 (01) : 238 - 270
  • [48] Spherical complexes attached to symplectic lattices
    van der Kallen, Wilberd
    Looijenga, Eduard
    GEOMETRIAE DEDICATA, 2011, 152 (01) : 197 - 211
  • [49] Spherical complexes attached to symplectic lattices
    Wilberd van der Kallen
    Eduard Looijenga
    Geometriae Dedicata, 2011, 152 : 197 - 211
  • [50] Spherical Induced Ensembles with Symplectic Symmetry
    Byun, Sung-Soo
    Forrester, Peter J.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2023, 19