Spherical Lagrangians via ball packings and symplectic cutting

被引:0
|
作者
Matthew Strom Borman
Tian-Jun Li
Weiwei Wu
机构
[1] University of Chicago,
[2] University of Minnesota,undefined
[3] Michigan State University,undefined
来源
Selecta Mathematica | 2014年 / 20卷
关键词
Symplectic manifolds; Symplectic ball packing; Lagrangian knots; Symplectic cutting; Rational manifolds; 53Dxx; 53D35; 53D12;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove the connectedness of symplectic ball packings in the complement of a spherical Lagrangian, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^{2}$$\end{document} or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{RP }^{2}$$\end{document}, in symplectic manifolds that are rational or ruled. Via a symplectic cutting construction, this is a natural extension of McDuff’s connectedness of ball packings in other settings and this result has applications to several different questions: smooth knotting and unknottedness results for spherical Lagrangians, the transitivity of the action of the symplectic Torelli group, classifying Lagrangian isotopy classes in the presence of knotting, and detecting Floer-theoretically essential Lagrangian tori in the del Pezzo surfaces.
引用
收藏
页码:261 / 283
页数:22
相关论文
共 50 条