On non-Abelian symplectic cutting

被引:4
|
作者
Martens, Johan [1 ]
Thaddeus, Michael [2 ]
机构
[1] Aarhus Univ, QGM, DK-8000 Aarhus, Denmark
[2] Columbia Univ, Dept Math, New York, NY 10027 USA
基金
新加坡国家研究基金会;
关键词
DELIGNE-MUMFORD STACKS; HAMILTONIAN TORUS ACTIONS; GEOMETRIC-QUANTIZATION; CONVEXITY PROPERTIES; MANIFOLDS; CUTS; VARIETIES; ORBIFOLDS; SURGERY; KAHLER;
D O I
10.1007/s00031-012-9202-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss symplectic cutting for Hamiltonian actions of non-Abelian compact groups. By using a degeneration based on the Vinberg monoid we give, in good cases, a global quotient description of a surgery construction introduced by Woodward and Meinrenken, and show it can be interpreted in algebro-geometric terms. A key ingredient is the 'universal cut' of the cotangent bundle of the group itself, which is identified with a moduli space of framed bundles on chains of projective lines recently introduced by the authors.
引用
收藏
页码:1059 / 1084
页数:26
相关论文
共 50 条
  • [1] On non-Abelian symplectic cutting
    Johan Martens
    Michael Thaddeus
    Transformation Groups, 2012, 17 : 1059 - 1084
  • [2] Non-abelian convexity by symplectic cuts
    Lerman, E
    Meinrenken, E
    Tolman, S
    Woodward, C
    TOPOLOGY, 1998, 37 (02) : 245 - 259
  • [3] SYMPLECTIC STRUCTURE FOR THE NON-ABELIAN GEOMETRIC PHASE
    CHRUSCINSKI, D
    PHYSICS LETTERS A, 1994, 186 (1-2) : 1 - 4
  • [4] Non-Abelian Symplectic Cuts and the Geometric Quantization of Noncompact Manifolds
    Jonathan Weitsman
    Letters in Mathematical Physics, 2001, 56 : 31 - 40
  • [5] NON-ABELIAN VORTICES AND NON-ABELIAN STATISTICS
    LO, HK
    PRESKILL, J
    PHYSICAL REVIEW D, 1993, 48 (10) : 4821 - 4834
  • [6] Higgs fields, non-abelian Cauchy kernels and the Goldman symplectic structure
    Bertola, M.
    Norton, C.
    Ruzza, G.
    NONLINEARITY, 2024, 37 (03)
  • [7] Non-Abelian statistics of vortices with non-Abelian Dirac fermions
    Yasui, Shigehiro
    Hirono, Yuji
    Itakura, Kazunori
    Nitta, Muneto
    PHYSICAL REVIEW E, 2013, 87 (05):
  • [8] HOW NON-ABELIAN IS NON-ABELIAN GAUGE-THEORY
    CRABB, MC
    SUTHERLAND, WA
    QUARTERLY JOURNAL OF MATHEMATICS, 1995, 46 (183): : 279 - 290
  • [9] Abelian representation for the non-Abelian Wilson loop and the non-Abelian Stokes theorem on the lattice
    Zubkov, MA
    PHYSICAL REVIEW D, 2003, 68 (05)
  • [10] Josephson junction of non-Abelian superconductors and non-Abelian Josephson vortices
    Nitta, Muneto
    NUCLEAR PHYSICS B, 2015, 899 : 78 - 90