On non-Abelian symplectic cutting

被引:4
|
作者
Martens, Johan [1 ]
Thaddeus, Michael [2 ]
机构
[1] Aarhus Univ, QGM, DK-8000 Aarhus, Denmark
[2] Columbia Univ, Dept Math, New York, NY 10027 USA
基金
新加坡国家研究基金会;
关键词
DELIGNE-MUMFORD STACKS; HAMILTONIAN TORUS ACTIONS; GEOMETRIC-QUANTIZATION; CONVEXITY PROPERTIES; MANIFOLDS; CUTS; VARIETIES; ORBIFOLDS; SURGERY; KAHLER;
D O I
10.1007/s00031-012-9202-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss symplectic cutting for Hamiltonian actions of non-Abelian compact groups. By using a degeneration based on the Vinberg monoid we give, in good cases, a global quotient description of a surgery construction introduced by Woodward and Meinrenken, and show it can be interpreted in algebro-geometric terms. A key ingredient is the 'universal cut' of the cotangent bundle of the group itself, which is identified with a moduli space of framed bundles on chains of projective lines recently introduced by the authors.
引用
收藏
页码:1059 / 1084
页数:26
相关论文
共 50 条
  • [41] Particles in non-Abelian gauge potentials: Landau problem and insertion of non-Abelian flux
    Estienne, B.
    Haaker, S. M.
    Schoutens, K.
    NEW JOURNAL OF PHYSICS, 2011, 13
  • [42] Exact Abelian and Non-Abelian Geometric Phases
    Soo, Chopin
    Lin, Huei-Chen
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2014, 8 : 85 - 101
  • [43] Non-Abelian statistics from an Abelian model
    Wootton, James R.
    Lahtinen, Ville
    Wang, Zhenghan
    Pachos, Jiannis K.
    PHYSICAL REVIEW B, 2008, 78 (16):
  • [44] Flat covers in abelian and in non-abelian categories
    Rump, Wolfgang
    ADVANCES IN MATHEMATICS, 2010, 225 (03) : 1589 - 1615
  • [45] Abelian and non-Abelian quantum geometric tensor
    Ma, Yu-Quan
    Chen, Shu
    Fan, Heng
    Liu, Wu-Ming
    PHYSICAL REVIEW B, 2010, 81 (24)
  • [46] Non-Abelian symplectic cuts and the geometric quantization of noncompact manifolds - Dedicated to the memory of Moshe Flato
    Weitsman, J
    LETTERS IN MATHEMATICAL PHYSICS, 2001, 56 (01) : 31 - 40
  • [47] The structure of non-abelian kinks
    Hollowood, Timothy J.
    Luis Miramontes, J.
    Schmidtt, David M.
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (10):
  • [48] Twisted non-Abelian vortices
    Forgacs, Peter
    Lukacs, Arpad
    Schaposnik, Fidel A.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2016, 31 (28-29):
  • [49] Non-Abelian anyon superconductivity
    Bishara, Waheb
    Nayak, Chetan
    PHYSICAL REVIEW LETTERS, 2007, 99 (06)
  • [50] A sphaleron for the non-Abelian anomaly
    Klinkhamer, FR
    Rupp, C
    NUCLEAR PHYSICS B, 2005, 709 (1-2) : 171 - 191