On non-Abelian symplectic cutting

被引:4
|
作者
Martens, Johan [1 ]
Thaddeus, Michael [2 ]
机构
[1] Aarhus Univ, QGM, DK-8000 Aarhus, Denmark
[2] Columbia Univ, Dept Math, New York, NY 10027 USA
基金
新加坡国家研究基金会;
关键词
DELIGNE-MUMFORD STACKS; HAMILTONIAN TORUS ACTIONS; GEOMETRIC-QUANTIZATION; CONVEXITY PROPERTIES; MANIFOLDS; CUTS; VARIETIES; ORBIFOLDS; SURGERY; KAHLER;
D O I
10.1007/s00031-012-9202-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss symplectic cutting for Hamiltonian actions of non-Abelian compact groups. By using a degeneration based on the Vinberg monoid we give, in good cases, a global quotient description of a surgery construction introduced by Woodward and Meinrenken, and show it can be interpreted in algebro-geometric terms. A key ingredient is the 'universal cut' of the cotangent bundle of the group itself, which is identified with a moduli space of framed bundles on chains of projective lines recently introduced by the authors.
引用
收藏
页码:1059 / 1084
页数:26
相关论文
共 50 条
  • [11] Note on Schwinger mechanism and a non-Abelian instability in a non-Abelian plasma
    Nair, V. P.
    Yelnikov, Alexandr
    PHYSICAL REVIEW D, 2010, 82 (12):
  • [12] Non-Abelian supertubes
    Fernandez-Melgarejo, Jose J.
    Park, Minkyu
    Shigemori, Masaki
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (12):
  • [13] Abelian and non-Abelian Weyl gravitoelectromagnetism
    Ramos, J.
    de Montigny, M.
    Khanna, F. C.
    ANNALS OF PHYSICS, 2020, 418
  • [14] The quintessence with Abelian and non-Abelian symmetry
    Li, XZ
    Hao, JG
    Liu, DJ
    Zhai, XH
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2003, 18 (32): : 5921 - 5930
  • [15] Non-Abelian antibrackets
    Alfaro, J
    Damgaard, PH
    PHYSICS LETTERS B, 1996, 369 (3-4) : 289 - 294
  • [16] Non-abelian ramification
    Pongerard, P
    Wagschal, C
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1998, 77 (01): : 51 - 88
  • [17] Non-abelian monopoles
    Auzzi, R
    Bolognesi, S
    Evslin, J
    Konishi, K
    Murayama, H
    NUCLEAR PHYSICS B, 2004, 701 (1-2) : 207 - 246
  • [18] Non-abelian ramification
    Wagschal, C
    JEAN LERAY '99 CONFERENCE PROCEEDINGS: THE KARLSKRONA CONFERENCE IN HONOR OF JEAN LERAY, 2003, 24 : 115 - +
  • [19] NON-ABELIAN ORBIFOLDS
    INOUE, K
    SAKAMOTO, M
    TAKANO, H
    PROGRESS OF THEORETICAL PHYSICS, 1987, 78 (04): : 908 - 922
  • [20] Non-Abelian eikonals
    Fried, HM
    Gabellini, Y
    PHYSICAL REVIEW D, 1997, 55 (04): : 2430 - 2440