On non-Abelian symplectic cutting

被引:4
|
作者
Martens, Johan [1 ]
Thaddeus, Michael [2 ]
机构
[1] Aarhus Univ, QGM, DK-8000 Aarhus, Denmark
[2] Columbia Univ, Dept Math, New York, NY 10027 USA
基金
新加坡国家研究基金会;
关键词
DELIGNE-MUMFORD STACKS; HAMILTONIAN TORUS ACTIONS; GEOMETRIC-QUANTIZATION; CONVEXITY PROPERTIES; MANIFOLDS; CUTS; VARIETIES; ORBIFOLDS; SURGERY; KAHLER;
D O I
10.1007/s00031-012-9202-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss symplectic cutting for Hamiltonian actions of non-Abelian compact groups. By using a degeneration based on the Vinberg monoid we give, in good cases, a global quotient description of a surgery construction introduced by Woodward and Meinrenken, and show it can be interpreted in algebro-geometric terms. A key ingredient is the 'universal cut' of the cotangent bundle of the group itself, which is identified with a moduli space of framed bundles on chains of projective lines recently introduced by the authors.
引用
收藏
页码:1059 / 1084
页数:26
相关论文
共 50 条
  • [21] Non-Abelian supertubes
    José J. Fernández-Melgarejo
    Minkyu Park
    Masaki Shigemori
    Journal of High Energy Physics, 2017
  • [22] Abelian and Non-Abelian Triangle Mysteries
    Mitchell, Lon
    Jones, Michael A.
    Shelton, Brittany
    AMERICAN MATHEMATICAL MONTHLY, 2016, 123 (08): : 808 - 813
  • [23] On non-Abelian holonomies
    Alfaro, J
    Morales-Técotl, HA
    Reyes, M
    Urrutia, LF
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (48): : 12097 - 12107
  • [24] Non-Abelian firewall
    Singleton, Douglas
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2020, 29 (14):
  • [25] NON-ABELIAN ZILCH
    DESER, S
    NICOLAI, H
    PHYSICS LETTERS B, 1981, 98 (1-2) : 45 - 47
  • [26] NON-ABELIAN SINGLETONS
    FLATO, M
    FRONSDAL, C
    JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (02) : 524 - 531
  • [27] Non-Abelian geometry
    Dasgupta, K
    Yin, Z
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 235 (02) : 313 - 338
  • [28] ON NON-ABELIAN DUALITY
    ALVAREZ, E
    ALVAREZGAUME, L
    LOZANO, Y
    NUCLEAR PHYSICS B, 1994, 424 (01) : 155 - 183
  • [29] Obtaining non-Abelian field theories via the Faddeev-Jackiw symplectic formalism
    Abreu, E. M. C.
    Mendes, A. C. R.
    Neves, C.
    Oliveira, W.
    Silva, R. C. N.
    Wotzasek, C.
    PHYSICS LETTERS A, 2010, 374 (35) : 3603 - 3607
  • [30] Majorana meets Coxeter: Non-Abelian Majorana fermions and non-Abelian statistics
    Yasui, Shigehiro
    Itakura, Kazunori
    Nitta, Muneto
    PHYSICAL REVIEW B, 2011, 83 (13):