Spherical Lagrangians via ball packings and symplectic cutting

被引:0
|
作者
Matthew Strom Borman
Tian-Jun Li
Weiwei Wu
机构
[1] University of Chicago,
[2] University of Minnesota,undefined
[3] Michigan State University,undefined
来源
Selecta Mathematica | 2014年 / 20卷
关键词
Symplectic manifolds; Symplectic ball packing; Lagrangian knots; Symplectic cutting; Rational manifolds; 53Dxx; 53D35; 53D12;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove the connectedness of symplectic ball packings in the complement of a spherical Lagrangian, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^{2}$$\end{document} or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{RP }^{2}$$\end{document}, in symplectic manifolds that are rational or ruled. Via a symplectic cutting construction, this is a natural extension of McDuff’s connectedness of ball packings in other settings and this result has applications to several different questions: smooth knotting and unknottedness results for spherical Lagrangians, the transitivity of the action of the symplectic Torelli group, classifying Lagrangian isotopy classes in the presence of knotting, and detecting Floer-theoretically essential Lagrangian tori in the del Pezzo surfaces.
引用
收藏
页码:261 / 283
页数:22
相关论文
共 50 条
  • [1] Spherical Lagrangians via ball packings and symplectic cutting
    Borman, Matthew Strom
    Li, Tian-Jun
    Wu, Weiwei
    SELECTA MATHEMATICA-NEW SERIES, 2014, 20 (01): : 261 - 283
  • [2] Maximal Ball Packings of Symplectic-Toric Manifolds
    Pelayo, Alvaro
    Schmidt, Benjamin
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2008, 2008
  • [3] On the minimal symplectic area of Lagrangians
    Zhou, Zhengyi
    JOURNAL OF SYMPLECTIC GEOMETRY, 2022, 20 (06) : 1385 - 1413
  • [4] Segments in ball packings
    Henk, M
    Zong, C
    MATHEMATIKA, 2000, 47 (93-94) : 31 - 38
  • [5] On the deformation of ball packings
    Ge, Huabin
    Jiang, Wenshuai
    Shen, Liangming
    ADVANCES IN MATHEMATICS, 2022, 398
  • [6] Ball packings for links
    Alfonsin, Jorge L. Ramirez
    Rasskin, Ivan
    EUROPEAN JOURNAL OF COMBINATORICS, 2021, 96
  • [7] SYMPLECTIC PACKINGS AND ALGEBRAIC-GEOMETRY
    MCDUFF, D
    POLTEROVICH, L
    INVENTIONES MATHEMATICAE, 1994, 115 (03) : 405 - 429
  • [8] Symplectic packings in cotangent bundles of tori
    Maley, FM
    Mastrangeli, J
    Traynor, L
    EXPERIMENTAL MATHEMATICS, 2000, 9 (03) : 435 - 455
  • [9] CURVES IN P(2) AND SYMPLECTIC PACKINGS
    XU, G
    MATHEMATISCHE ANNALEN, 1994, 299 (04) : 609 - 613
  • [10] On the topology of real Lagrangians in toric symplectic manifolds
    Joé Brendel
    Joontae Kim
    Jiyeon Moon
    Israel Journal of Mathematics, 2023, 253 : 113 - 156