On the minimal symplectic area of Lagrangians

被引:0
|
作者
Zhou, Zhengyi [1 ,2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Morningside Ctr Math, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Inst Math, Acad Math & Syst Sci, Beijing 100190, Peoples R China
基金
美国国家科学基金会;
关键词
FLOER HOMOLOGY; WEINSTEIN CONJECTURE; CURVES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the minimal symplectic area of Lagrangian submani-folds are universally bounded in symplectically aspherical domains with vanishing symplectic cohomology. If an exact domain admits a k-semi-dilation, then the minimal symplectic area is universally bounded for K (p, 1)-Lagrangians. As a corollary, we show that the Arnol'd chord conjecture holds for the following four cases: (1) Y admits an exact filling with SH*(W) = 0 (for some nonzero ring coefficient); (2) Y admits a symplectically aspherical filling with SH*(W) = 0 and simply connected Legendrians; (3) Y admits an exact filling with a k-semi-dilation and the Legendrian is a K(p, 1) space; (4) Y is the cosphere bundle S*Q with p(2)(Q) -> H-2(Q) non-trivial and the Legendrian has trivial p(2). In addition, we obtain the existence of homoclinic orbits in case (1). We also provide many more examples with k-semi-dilations in all dimensions = 4.
引用
收藏
页码:1385 / 1413
页数:29
相关论文
共 50 条
  • [1] On the topology of real Lagrangians in toric symplectic manifolds
    Joé Brendel
    Joontae Kim
    Jiyeon Moon
    Israel Journal of Mathematics, 2023, 253 : 113 - 156
  • [2] THE THEORY OF EQUIVALENT LAGRANGIANS REVISITED - A SYMPLECTIC APPROACH
    RANADA, MF
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 1991, 39 (01): : 69 - 83
  • [3] On the Topology of Real Lagrangians in Toric Symplectic Manifolds
    Brendel, Joe
    Kim, Joontae
    Moon, Jiyeon
    ISRAEL JOURNAL OF MATHEMATICS, 2023, 253 (01) : 113 - 156
  • [4] Deformations of Symplectic Cohomology and Exact Lagrangians in ALE Spaces
    Ritter, Alexander F.
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2010, 20 (03) : 779 - 816
  • [5] Spherical Lagrangians via ball packings and symplectic cutting
    Matthew Strom Borman
    Tian-Jun Li
    Weiwei Wu
    Selecta Mathematica, 2014, 20 : 261 - 283
  • [6] Complementary Lagrangians in infinite dimensional symplectic Hilbert spaces
    Piccione, P
    Tausk, DV
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2005, 77 (04): : 589 - 594
  • [7] Spherical Lagrangians via ball packings and symplectic cutting
    Borman, Matthew Strom
    Li, Tian-Jun
    Wu, Weiwei
    SELECTA MATHEMATICA-NEW SERIES, 2014, 20 (01): : 261 - 283
  • [8] Deformations of Symplectic Cohomology and Exact Lagrangians in ALE Spaces
    Alexander F. Ritter
    Geometric and Functional Analysis, 2010, 20 : 779 - 816
  • [9] MINIMAL SYMPLECTIC GROUPS
    VANDERWAALL, RW
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1977, 80 (05): : 463 - 468
  • [10] minimal-lagrangians: Generating and studying dark matter model Lagrangians with just the particle content
    May, Simon
    Computer Physics Communications, 2021, 261