On the minimal symplectic area of Lagrangians

被引:0
|
作者
Zhou, Zhengyi [1 ,2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Morningside Ctr Math, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Inst Math, Acad Math & Syst Sci, Beijing 100190, Peoples R China
基金
美国国家科学基金会;
关键词
FLOER HOMOLOGY; WEINSTEIN CONJECTURE; CURVES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the minimal symplectic area of Lagrangian submani-folds are universally bounded in symplectically aspherical domains with vanishing symplectic cohomology. If an exact domain admits a k-semi-dilation, then the minimal symplectic area is universally bounded for K (p, 1)-Lagrangians. As a corollary, we show that the Arnol'd chord conjecture holds for the following four cases: (1) Y admits an exact filling with SH*(W) = 0 (for some nonzero ring coefficient); (2) Y admits a symplectically aspherical filling with SH*(W) = 0 and simply connected Legendrians; (3) Y admits an exact filling with a k-semi-dilation and the Legendrian is a K(p, 1) space; (4) Y is the cosphere bundle S*Q with p(2)(Q) -> H-2(Q) non-trivial and the Legendrian has trivial p(2). In addition, we obtain the existence of homoclinic orbits in case (1). We also provide many more examples with k-semi-dilations in all dimensions = 4.
引用
收藏
页码:1385 / 1413
页数:29
相关论文
共 50 条
  • [21] Minimal surfaces and symplectic structures of moduli spaces
    Loustau, Brice
    GEOMETRIAE DEDICATA, 2015, 175 (01) : 309 - 322
  • [22] MINIMAL CHIRAL SCHWINGER MODEL IN THE SYMPLECTIC FORMALISM
    YOON, SJ
    KIM, YW
    KIM, SK
    PARK, YJ
    KIM, KY
    KIM, YD
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 1994, 27 (03) : 270 - 275
  • [23] Minimal models of compact symplectic semitoric manifolds
    Kane, D. M.
    Palmer, J.
    Pelayo, A.
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 125 : 49 - 74
  • [24] MINIMAL DIMENSION OF ORBITS OF SYMPLECTIC ACTIONS OF RN
    TURIEL, FJ
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1987, 305 (04): : 131 - 133
  • [25] MINIMAL MODULARITY LIFTING FOR NONREGULAR SYMPLECTIC REPRESENTATIONS
    Calegari, Frank
    Geraghty, David
    Harris, Michael
    DUKE MATHEMATICAL JOURNAL, 2020, 169 (05) : 801 - 896
  • [26] Minimal symplectic atlases of Hermitian symmetric spaces
    Roberto Mossa
    Giovanni Placini
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2015, 85 : 79 - 85
  • [27] Minimal surfaces and symplectic structures of moduli spaces
    Brice Loustau
    Geometriae Dedicata, 2015, 175 : 309 - 322
  • [28] Smoothing singular constant scalar curvature Kahler surfaces and minimal Lagrangians
    Biquard, Olivier
    Rollin, Yann
    ADVANCES IN MATHEMATICS, 2015, 285 : 980 - 1024
  • [30] A symplectic embedding of the cube with minimal sections and a question by Schlenk
    Fabian Ziltener
    Journal of Fixed Point Theory and Applications, 2022, 24