Max–min dispersion on a line

被引:0
|
作者
Tetsuya Araki
Shin-ichi Nakano
机构
[1] Gunma University,
来源
关键词
Dispersion problem; Facility location; Algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
Given a set P of n locations on which facilities can be placed and an integer k, we want to place k facilities on some locations so that a designated objective function is maximized. The problem is called the k-dispersion problem. For instance it is desirable to locate fire departments far away each other. In this paper we give a simple O((2k2)kn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O((2k^2)^k n)$$\end{document} time algorithm to solve the max–min version of the k-dispersion problem if P is a set of points on a line. If k is a constant then this is an O(n) time algorithm. This is the first O(n) time algorithm to solve the max–min k-dispersion problem for the set of “unsorted” points on a line. If P is a set of sorted points on a line, and the input is given as an array in which the coordinates of the points are stored in the sorted order, then by slightly modifying the algorithm above one can solve the dispersion problem in O(logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\log n)$$\end{document} time. This is the first sublinear time algorithm to solve the max–min k-dispersion problem for the set of sorted points on a line.
引用
收藏
页码:1824 / 1830
页数:6
相关论文
共 50 条
  • [41] MIN-MAX INDICATOR
    VASILEV, SI
    SIDELNIKOV, ZI
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 1983, 26 (06) : 1325 - 1327
  • [42] On a min-max theorem
    Wu G.R.
    Huang W.H.
    Shen Z.H.
    Applied Mathematics-A Journal of Chinese Universities, 1997, 12 (3) : 293 - 298
  • [43] Upward Max Min Fairness
    Danna, Emilie
    Hassidim, Avinatan
    Kaplan, Haim
    Kumar, Alok
    Mansour, Yishay
    Raz, Danny
    Segalov, Michal
    2012 PROCEEDINGS IEEE INFOCOM, 2012, : 837 - 845
  • [44] On (min,max, plus )-inequalities
    van der Woude, J
    Olsder, GJ
    Idempotent Mathematics and Mathematical Physics, 2005, 377 : 353 - 361
  • [45] On Min–Max Pair in Tournaments
    Xiaoyun Lu
    Graphs and Combinatorics, 2018, 34 : 613 - 618
  • [46] MAX-MIN PROBLEMS
    KAPUR, KC
    NAVAL RESEARCH LOGISTICS, 1973, 20 (04) : 639 - 644
  • [47] ON A MIN-MAX THEOREM
    CHEN FANGQI
    AppliedMathematics:AJournalofChineseUniversities(SeriesB), 1997, (03) : 43 - 48
  • [48] A MAX-MIN PROBLEM
    MARSH, DCB
    AMERICAN MATHEMATICAL MONTHLY, 1967, 74 (1P1): : 86 - &
  • [49] CONSTRAINED MAX MIN CONTROLLABILITY
    SCHMITENDORF, WE
    ELENBOGEN, BS
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1982, 27 (03) : 731 - 733
  • [50] Max Min Coordinate Difference
    Kouba, Omran
    AMERICAN MATHEMATICAL MONTHLY, 2011, 118 (03): : 279 - 280