Max–min dispersion on a line

被引:0
|
作者
Tetsuya Araki
Shin-ichi Nakano
机构
[1] Gunma University,
来源
关键词
Dispersion problem; Facility location; Algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
Given a set P of n locations on which facilities can be placed and an integer k, we want to place k facilities on some locations so that a designated objective function is maximized. The problem is called the k-dispersion problem. For instance it is desirable to locate fire departments far away each other. In this paper we give a simple O((2k2)kn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O((2k^2)^k n)$$\end{document} time algorithm to solve the max–min version of the k-dispersion problem if P is a set of points on a line. If k is a constant then this is an O(n) time algorithm. This is the first O(n) time algorithm to solve the max–min k-dispersion problem for the set of “unsorted” points on a line. If P is a set of sorted points on a line, and the input is given as an array in which the coordinates of the points are stored in the sorted order, then by slightly modifying the algorithm above one can solve the dispersion problem in O(logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\log n)$$\end{document} time. This is the first sublinear time algorithm to solve the max–min k-dispersion problem for the set of sorted points on a line.
引用
收藏
页码:1824 / 1830
页数:6
相关论文
共 50 条
  • [31] Emergent on-line learning in min-max modular neural networks
    Lu, BL
    Ichikawa, M
    IJCNN'01: INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2001, : 2650 - 2655
  • [32] An off line algorithm for reducing the computational burden of a MPC min max controller
    Alamo, T
    de la Peña, DM
    Camacho, EF
    42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, 2003, : 1433 - 1437
  • [33] Max-min and min-max approximation problems for normal matrices revisited
    Liesen, Jörg
    Tichý, Petr
    1600, Kent State University (41): : 159 - 166
  • [34] Min–max and max–min approaches to the solution of wave equation in relativistic quantum chemistry
    Sambhu Nath Datta
    Indian Journal of Physics, 2019, 93 : 285 - 299
  • [35] MAX-MIN AND MIN-MAX APPROXIMATION PROBLEMS FOR NORMAL MATRICES REVISITED
    Liesen, Joerg
    Tichy, Petr
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2014, 41 : 159 - 166
  • [36] Min-max-min robust combinatorial optimization
    Buchheim, Christoph
    Kurtz, Jannis
    MATHEMATICAL PROGRAMMING, 2017, 163 (1-2) : 1 - 23
  • [37] The max-min-min principle of product differentiation
    Ansari, A
    Economides, N
    Steckel, J
    JOURNAL OF REGIONAL SCIENCE, 1998, 38 (02) : 207 - 230
  • [38] FACTORIZED GROUPS WITH MAX, MIN AND MIN-P
    AMBERG, B
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1984, 27 (02): : 171 - 178
  • [39] A smoothing algorithm for finite min–max–min problems
    Angelos Tsoukalas
    Panos Parpas
    Berç Rustem
    Optimization Letters, 2009, 3 : 49 - 62
  • [40] Max-flow min-cut theorems on dispersion and entropy measures for communication networks
    Riis, Soren
    Gadouleau, Maximilien
    INFORMATION AND COMPUTATION, 2019, 267 : 49 - 73