Max–min dispersion on a line

被引:0
|
作者
Tetsuya Araki
Shin-ichi Nakano
机构
[1] Gunma University,
来源
关键词
Dispersion problem; Facility location; Algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
Given a set P of n locations on which facilities can be placed and an integer k, we want to place k facilities on some locations so that a designated objective function is maximized. The problem is called the k-dispersion problem. For instance it is desirable to locate fire departments far away each other. In this paper we give a simple O((2k2)kn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O((2k^2)^k n)$$\end{document} time algorithm to solve the max–min version of the k-dispersion problem if P is a set of points on a line. If k is a constant then this is an O(n) time algorithm. This is the first O(n) time algorithm to solve the max–min k-dispersion problem for the set of “unsorted” points on a line. If P is a set of sorted points on a line, and the input is given as an array in which the coordinates of the points are stored in the sorted order, then by slightly modifying the algorithm above one can solve the dispersion problem in O(logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\log n)$$\end{document} time. This is the first sublinear time algorithm to solve the max–min k-dispersion problem for the set of sorted points on a line.
引用
收藏
页码:1824 / 1830
页数:6
相关论文
共 50 条
  • [21] An aggregate deformation homotopy method for min-max-min problems with max-min constraints
    Xiong, Hui-juan
    Yu, Bo
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2010, 47 (03) : 501 - 527
  • [22] Min–max–min robust combinatorial optimization
    Christoph Buchheim
    Jannis Kurtz
    Mathematical Programming, 2017, 163 : 1 - 23
  • [23] Min-Max Spaces and Complexity Reduction in Min-Max Expansions
    Stephane Gaubert
    William M. McEneaney
    Applied Mathematics & Optimization, 2012, 65 : 315 - 348
  • [24] Min-Max Spaces and Complexity Reduction in Min-Max Expansions
    Gaubert, Stephane
    McEneaney, William M.
    APPLIED MATHEMATICS AND OPTIMIZATION, 2012, 65 (03): : 315 - 348
  • [25] Complexity of the min-max and min-max regret assignment problems
    Aissi, H
    Bazgan, C
    Vanderpooten, D
    OPERATIONS RESEARCH LETTERS, 2005, 33 (06) : 634 - 640
  • [26] Local Approximability of Max-Min and Min-Max Linear Programs
    Patrik Floréen
    Marja Hassinen
    Joel Kaasinen
    Petteri Kaski
    Topi Musto
    Jukka Suomela
    Theory of Computing Systems, 2011, 49 : 672 - 697
  • [27] Local Approximability of Max-Min and Min-Max Linear Programs
    Floreen, Patrik
    Hassinen, Marja
    Kaasinen, Joel
    Kaski, Petteri
    Musto, Topi
    Suomela, Jukka
    THEORY OF COMPUTING SYSTEMS, 2011, 49 (04) : 672 - 697
  • [28] Gumbel central limit theorem for max-min and min-max
    Eliazar, Iddo
    Metzler, Ralf
    Reuveni, Shlomi
    PHYSICAL REVIEW E, 2019, 100 (02)
  • [29] Min–max and min–max (relative) regret approaches to representatives selection problem
    Alexandre Dolgui
    Sergey Kovalev
    4OR, 2012, 10 : 181 - 192
  • [30] A unified framework for max-min and min-max fairness with applications
    Radunovic, Bozidar
    Le Boudec, Jean-Yves
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2007, 15 (05) : 1073 - 1083