Max–min dispersion on a line

被引:0
|
作者
Tetsuya Araki
Shin-ichi Nakano
机构
[1] Gunma University,
来源
关键词
Dispersion problem; Facility location; Algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
Given a set P of n locations on which facilities can be placed and an integer k, we want to place k facilities on some locations so that a designated objective function is maximized. The problem is called the k-dispersion problem. For instance it is desirable to locate fire departments far away each other. In this paper we give a simple O((2k2)kn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O((2k^2)^k n)$$\end{document} time algorithm to solve the max–min version of the k-dispersion problem if P is a set of points on a line. If k is a constant then this is an O(n) time algorithm. This is the first O(n) time algorithm to solve the max–min k-dispersion problem for the set of “unsorted” points on a line. If P is a set of sorted points on a line, and the input is given as an array in which the coordinates of the points are stored in the sorted order, then by slightly modifying the algorithm above one can solve the dispersion problem in O(logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\log n)$$\end{document} time. This is the first sublinear time algorithm to solve the max–min k-dispersion problem for the set of sorted points on a line.
引用
收藏
页码:1824 / 1830
页数:6
相关论文
共 50 条
  • [1] Max-min dispersion on a line
    Araki, Tetsuya
    Nakano, Shin-ichi
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 44 (03) : 1824 - 1830
  • [2] Max-Min Dispersion on a Line
    Araki, Tetsuya
    Nakano, Shin-ichi
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS (COCOA 2018), 2018, 11346 : 672 - 678
  • [3] Max–max, max–min, min–max and min–min knapsack problems with a parametric constraint
    Nir Halman
    Mikhail Y. Kovalyov
    Alain Quilliot
    4OR, 2023, 21 : 235 - 246
  • [4] Max-Min 3-Dispersion Problems
    Horiyama, Takashi
    Nakano, Shin-ichi
    Saitoh, Toshiki
    Suetsugu, Koki
    Suzuki, Akira
    Uehara, Ryuhei
    Uno, Takeaki
    Wasa, Kunihiro
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2021, E104A (09) : 1101 - 1107
  • [5] Max-Min 3-Dispersion Problems
    Horiyama, Takashi
    Nakano, Shin-ichi
    Saitoh, Toshiki
    Suetsugu, Koki
    Suzuki, Akira
    Uehara, Ryuhei
    Uno, Takeaki
    Wasa, Kunihiro
    COMPUTING AND COMBINATORICS, COCOON 2019, 2019, 11653 : 291 - 300
  • [6] Exact Algorithms for the Max-Min Dispersion Problem
    Akagi, Toshihiro
    Araki, Tetsuya
    Horiyama, Takashi
    Nakano, Shin-ichi
    Okamoto, Yoshio
    Otachi, Yota
    Saitoh, Toshiki
    Uehara, Ryuhei
    Uno, Takeaki
    Wasa, Kunihiro
    FRONTIERS IN ALGORITHMICS (FAW 2018), 2018, 10823 : 263 - 272
  • [7] Control of an electroplating line in the max and min algebras
    Spacek, P
    Manier, MA
    El Moudni, A
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1999, 30 (07) : 759 - 778
  • [8] Max-max, max-min, min-max and min-min knapsack problems with a parametric constraint
    Halman, Nir
    Kovalyov, Mikhail Y.
    Quilliot, Alain
    4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH, 2023, 21 (02): : 235 - 246
  • [9] Max-min dispersion with capacity and cost for a practical location problem
    Lozano-Osorio, Isaac
    Martinez-Gavara, Anna
    Marti, Rafael
    Duarte, Abraham
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 200
  • [10] On-line stream merging with max span and min coverage
    Chan, WT
    Lam, TW
    Ting, HF
    Wong, PWH
    THEORY OF COMPUTING SYSTEMS, 2005, 38 (04) : 461 - 479