共 50 条
Lie bialgebra structures on generalized loop Schrödinger-Virasoro algebras
被引:0
|作者:
Haibo Chen
Xiansheng Dai
Hengyun Yang
机构:
[1] Shanghai Lixin University of Accounting and Finance,School of Statistics and Mathematics
[2] Guizhou Normal University,School of Mathematics Sciences
[3] Shanghai Maritime University,Department of Mathematics
来源:
关键词:
Lie bialgebra;
Yang-Baxter equation;
generalized loop Schrödinger-Virasoro algebra;
17B05;
17B37;
17B62;
17B68;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We give a classification of Lie bialgebra structures on generalized loop Schrödinger-Virasoro algebras sv\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathfrak{sv}$$\end{document}. Then we find out that not all Lie bialgebra structures on generalized loop Schrödinger-Virasoro algebras sv\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathfrak{sv}$$\end{document} are triangular coboundary.
引用
收藏
页码:239 / 260
页数:21
相关论文