广义扩张的Schr?dinger-Virasoro代数的导子

被引:0
|
作者
王松
王晓明
机构
[1] 上海海洋大学信息学院
关键词
Schr?dinger-Virasoro代数; 同调群; 导子;
D O I
暂无
中图分类号
O152.5 [李群];
学科分类号
摘要
假设F是特征为0的域,Γ是F上的加法子群,域F上的某个元s满足s■Γ但2s∈Γ,本文定义了一类无限维李代数,称之为广义扩张的Schrodinger-Virasoro代数W,[Γ,s].本文确定了
引用
收藏
页码:450 / 458
页数:9
相关论文
共 8 条
  • [1] STRUCTURES OF GENERALIZED LOOP VIRASORO ALGEBRAS
    Wu, Henan
    Wang, Song
    Yue, Xiaoqing
    [J]. COMMUNICATIONS IN ALGEBRA, 2014, 42 (04) : 1545 - 1558
  • [2] Derivations and Automorphisms of Twisted Deformative Schr?dinger–Virasoro Lie Algebras[J] . Wei Wang,Junbo Li,Ying Xu. Communications in Algebra . 2012 (9)
  • [3] Automorphisms and Verma modules for generalized Schr?dinger–Virasoro algebras[J] . Shaobin Tan,Xiufu Zhang. Journal of Algebra . 2009 (4)
  • [4] On vertex algebra representations of the Schr?dinger–Virasoro Lie algebra[J] . Jérémie Unterberger. Nuclear Physics, Section B . 2009 (3)
  • [5] The Schr?dinger-Virasoro Lie Group and Algebra: Representation Theory and Cohomological Study[J] . Claude Roger,Jérémie Unterberger. Annales Henri Poincaré . 2007 (7)
  • [6] Derivations, isomorphisms, and second cohomology of generalized Witt algebras[J] . Dragomir Z. DJ Okovic,Kaming Zhao. tran . 1998 (2)
  • [7] Schr?dinger invariance and strongly anisotropic critical systems[J] . Malte Henkel. Journal of Statistical Physics . 1994 (5)
  • [8] Derivations and central extensions of finitely generated graded Lie algebras .2 Rolf Farnsteiner. J. Algebra . 1988