We give a classification of Lie bialgebra structures on generalized loop Schrödinger-Virasoro algebras sv\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathfrak{sv}$$\end{document}. Then we find out that not all Lie bialgebra structures on generalized loop Schrödinger-Virasoro algebras sv\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathfrak{sv}$$\end{document} are triangular coboundary.
机构:
Guizhou Normal Univ, Sch Math Sci, Guiyang 550001, Peoples R China
Tongji Univ, Sch Math Sci, Shanghai 200092, Peoples R ChinaGuizhou Normal Univ, Sch Math Sci, Guiyang 550001, Peoples R China
Dai, Xiansheng
Xin, Bin
论文数: 0引用数: 0
h-index: 0
机构:
Guizhou Normal Univ, Sch Math Sci, Guiyang 550001, Peoples R ChinaGuizhou Normal Univ, Sch Math Sci, Guiyang 550001, Peoples R China
机构:
Shandong Technol & Business Univ, Coll Math & Informat Sci, Yantai 264005, Shandong, Peoples R ChinaShandong Technol & Business Univ, Coll Math & Informat Sci, Yantai 264005, Shandong, Peoples R China
Song, Guang'ai
Yue, Xiaoqing
论文数: 0引用数: 0
h-index: 0
机构:
Tongji Univ, Sch Math Sci, Shanghai 200092, Peoples R ChinaShandong Technol & Business Univ, Coll Math & Informat Sci, Yantai 264005, Shandong, Peoples R China