Lie bialgebra structures on generalized loop Schrödinger-Virasoro algebras

被引:0
|
作者
Haibo Chen
Xiansheng Dai
Hengyun Yang
机构
[1] Shanghai Lixin University of Accounting and Finance,School of Statistics and Mathematics
[2] Guizhou Normal University,School of Mathematics Sciences
[3] Shanghai Maritime University,Department of Mathematics
来源
关键词
Lie bialgebra; Yang-Baxter equation; generalized loop Schrödinger-Virasoro algebra; 17B05; 17B37; 17B62; 17B68;
D O I
暂无
中图分类号
学科分类号
摘要
We give a classification of Lie bialgebra structures on generalized loop Schrödinger-Virasoro algebras sv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak{sv}$$\end{document}. Then we find out that not all Lie bialgebra structures on generalized loop Schrödinger-Virasoro algebras sv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak{sv}$$\end{document} are triangular coboundary.
引用
收藏
页码:239 / 260
页数:21
相关论文
共 50 条