On Maximizing Sums of Non-monotone Submodular and Linear Functions

被引:0
|
作者
Benjamin Qi
机构
[1] Massachusetts Institute of Technology,Department of Electrical Engineering and Computer Science
来源
Algorithmica | 2024年 / 86卷
关键词
Submodular maximization; Regularization; Continuous greedy; Double greedy; Inapproximability;
D O I
暂无
中图分类号
学科分类号
摘要
We study the problem of Regularized Unconstrained SubmodularMaximization (RegularizedUSM) as defined by Bodek and Feldman (Maximizing sums of non-monotone submodular and linear functions: understanding the unconstrained case, arXiv:2204.03412, 2022): given query access to a non-negative submodular function f:2N→R≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:2^{{\mathcal {N}}}\rightarrow {\mathbb {R}}_{\ge 0}$$\end{document} and a linear function ℓ:2N→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell :2^{{\mathcal {N}}}\rightarrow {\mathbb {R}}$$\end{document} over the same ground set N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {N}}$$\end{document}, output a set T⊆N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T\subseteq {\mathcal {N}}$$\end{document} approximately maximizing the sum f(T)+ℓ(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(T)+\ell (T)$$\end{document}. An algorithm is said to provide an (α,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha ,\beta )$$\end{document}-approximation for RegularizedUSM if it outputs a set T such that E[f(T)+ℓ(T)]≥maxS⊆N[α·f(S)+β·ℓ(S)]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {E}}[f(T)+\ell (T)]\ge \max _{S\subseteq {\mathcal {N}}}[\alpha \cdot f(S)+\beta \cdot \ell (S)]$$\end{document}. We also consider the setting where S and T are constrained to be independent in a given matroid, which we refer to as Regularized ConstrainedSubmodular Maximization (RegularizedCSM). The special case of RegularizedCSM with monotone f has been extensively studied (Sviridenko et al. in Math Oper Res 42(4):1197–1218, 2017; Feldman in Algorithmica 83(3):853–878, 2021; Harshaw et al., in: International conference on machine learning, PMLR, 2634–2643, 2019), whereas we are aware of only one prior work that studies RegularizedCSM with non-monotone f (Lu et al. in Optimization 1–27, 2023), and that work constrains ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} to be non-positive. In this work, we provide improved (α,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha ,\beta )$$\end{document}-approximation algorithms for both RegularizedUSM and RegularizedCSM with non-monotone f. Specifically, we are the first to provide nontrivial (α,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha ,\beta )$$\end{document}-approximations for RegularizedCSM where the sign of ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} is unconstrained, and the α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} we obtain for RegularizedUSM improves over (Bodek and Feldman in Maximizing sums of non-monotone submodular and linear functions: understanding the unconstrained case, arXiv:2204.03412, 2022) for all β∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta \in (0,1)$$\end{document}. We also prove new inapproximability results for RegularizedUSM and RegularizedCSM, as well as 0.478-inapproximability for maximizing a submodular function where S and T are subject to a cardinality constraint, improving a 0.491-inapproximability result due to Oveis Gharan and Vondrak (in: Proceedings of the twenty-second annual ACM-SIAM symposium on discrete algorithms, SIAM, pp 1098–1116, 2011).
引用
收藏
页码:1080 / 1134
页数:54
相关论文
共 50 条
  • [21] Maximizing monotone submodular functions over the integer lattice
    Tasuku Soma
    Yuichi Yoshida
    Mathematical Programming, 2018, 172 : 539 - 563
  • [22] Improved Deterministic Algorithms for Non-monotone Submodular Maximization
    Sun, Xiaoming
    Zhang, Jialin
    Zhang, Shuo
    Zhang, Zhijie
    COMPUTING AND COMBINATORICS, COCOON 2022, 2022, 13595 : 496 - 507
  • [23] Maximizing Monotone Submodular Functions over the Integer Lattice
    Soma, Tasuku
    Yoshida, Yuichi
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2016, 2016, 9682 : 325 - 336
  • [24] Maximizing monotone submodular functions over the integer lattice
    Soma, Tasuku
    Yoshida, Yuichi
    MATHEMATICAL PROGRAMMING, 2018, 172 (1-2) : 539 - 563
  • [25] Improved deterministic algorithms for non-monotone submodular maximization
    Sun, Xiaoming
    Zhang, Jialin
    Zhang, Shuo
    Zhang, Zhijie
    THEORETICAL COMPUTER SCIENCE, 2024, 984
  • [26] Non-monotone Submodular Maximization in Exponentially Fewer Iterations
    Balkanski, Eric
    Breuer, Adam
    Singer, Yaron
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [27] Practical Parallel Algorithms for Non-Monotone Submodular Maximization
    Cui, Shuang
    Han, Kai
    Tang, Jing
    Li, Xueying
    Zhiyuli, Aakas
    Li, Hanxiao
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2024, 82 : 39 - 75
  • [28] Linear Query Approximation Algorithms for Non-monotone Submodular Maximization under Knapsack Constraint
    Pham, Canh V.
    Tran, Tan D.
    Ha, Dung T. K.
    Thai, My T.
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 4127 - 4135
  • [29] Non-monotone Adaptive Submodular Meta-Learning
    Tang, Shaojie
    Yuan, Jing
    PROCEEDINGS OF THE 2021 SIAM CONFERENCE ON APPLIED AND COMPUTATIONAL DISCRETE ALGORITHMS, ACDA21, 2021, : 57 - 65
  • [30] Deterministic streaming algorithms for non-monotone submodular maximization
    Sun, Xiaoming
    Zhang, Jialin
    Zhang, Shuo
    FRONTIERS OF COMPUTER SCIENCE, 2025, 19 (06)