Improved deterministic algorithms for non-monotone submodular maximization

被引:4
|
作者
Sun, Xiaoming [1 ,2 ]
Zhang, Jialin [1 ,2 ]
Zhang, Shuo [1 ,2 ]
Zhang, Zhijie [3 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, State Key Lab Processors, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing, Peoples R China
[3] Fuzhou Univ, Ctr Appl Math Fujian Prov, Sch Math & Stat, Fuzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Submodular maximization; Deterministic algorithms; Derandomization; Twin greedy; Multiplicative updates; APPROXIMATIONS;
D O I
10.1016/j.tcs.2023.114293
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Submodular maximization is one of the central topics in combinatorial optimization. It has found numerous applications in the real world. In the past decades, a series of algorithms have been proposed for this problem. However, most of the state-of-the-art algorithms are randomized. There remain non-negligible gaps with respect to approximation ratios between deterministic and randomized algorithms in submodular maximization.In this paper, we propose deterministic algorithms with improved approximation ratios for non-monotone submodular maximization. Specifically, for the matroid constraint, we provide a deterministic 0.283 - ������(1) approximation algorithm, while the previous best deterministic algorithm only achieves a 1/4 approximation ratio. For the knapsack constraint, we provide a deterministic 1/4 approximation algorithm, while the previous best deterministic algorithm only achieves a 1/6 approximation ratio. For the linear packing constraints with large widths, we provide a deterministic 1/6 - ������ approximation algorithm. To the best of our knowledge, there is currently no deterministic approximation algorithm for the constraints.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Improved Deterministic Algorithms for Non-monotone Submodular Maximization
    Sun, Xiaoming
    Zhang, Jialin
    Zhang, Shuo
    Zhang, Zhijie
    COMPUTING AND COMBINATORICS, COCOON 2022, 2022, 13595 : 496 - 507
  • [2] Deterministic streaming algorithms for non-monotone submodular maximization
    Sun, Xiaoming
    Zhang, Jialin
    Zhang, Shuo
    FRONTIERS OF COMPUTER SCIENCE, 2025, 19 (06)
  • [3] Practical Parallel Algorithms for Non-Monotone Submodular Maximization
    Cui, Shuang
    Han, Kai
    Tang, Jing
    Li, Xueying
    Zhiyuli, Aakas
    Li, Hanxiao
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2024, 82 : 39 - 75
  • [4] Optimal Algorithms for Continuous Non-monotone Submodular and DR-Submodular Maximization
    Niazadeh, Rad
    Roughgarden, Tim
    Wang, Joshua R.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [5] Constrained Non-monotone Submodular Maximization: Offline and Secretary Algorithms
    Gupta, Anupam
    Roth, Aaron
    Schoenebeck, Grant
    Talwar, Kunal
    INTERNET AND NETWORK ECONOMICS, 2010, 6484 : 246 - +
  • [6] Approximation Algorithms for Size-Constrained Non-Monotone Submodular Maximization in Deterministic Linear Time
    Chen, Yixin
    Kuhnle, Alan
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 250 - 261
  • [7] Optimal algorithms for continuous non-monotone submodular and DR-submodular maximization
    Niazadeh, Rad
    Roughgarden, Tim
    Wang, Joshua R.
    Journal of Machine Learning Research, 2020, 21
  • [8] Optimal Algorithms for Continuous Non-monotone Submodular and DR-Submodular Maximization
    Niazadeh, Rad
    Roughgarden, Tim
    Wang, Joshua R.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [9] Non-monotone Sequential Submodular Maximization
    Tang, Shaojie
    Yuan, Jing
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 14, 2024, : 15284 - 15291
  • [10] Non-Monotone Adaptive Submodular Maximization
    Gotovos, Alkis
    Karbasi, Amin
    Krause, Andreas
    PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), 2015, : 1996 - 2003