On Maximizing Sums of Non-monotone Submodular and Linear Functions

被引:0
|
作者
Benjamin Qi
机构
[1] Massachusetts Institute of Technology,Department of Electrical Engineering and Computer Science
来源
Algorithmica | 2024年 / 86卷
关键词
Submodular maximization; Regularization; Continuous greedy; Double greedy; Inapproximability;
D O I
暂无
中图分类号
学科分类号
摘要
We study the problem of Regularized Unconstrained SubmodularMaximization (RegularizedUSM) as defined by Bodek and Feldman (Maximizing sums of non-monotone submodular and linear functions: understanding the unconstrained case, arXiv:2204.03412, 2022): given query access to a non-negative submodular function f:2N→R≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:2^{{\mathcal {N}}}\rightarrow {\mathbb {R}}_{\ge 0}$$\end{document} and a linear function ℓ:2N→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell :2^{{\mathcal {N}}}\rightarrow {\mathbb {R}}$$\end{document} over the same ground set N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {N}}$$\end{document}, output a set T⊆N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T\subseteq {\mathcal {N}}$$\end{document} approximately maximizing the sum f(T)+ℓ(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(T)+\ell (T)$$\end{document}. An algorithm is said to provide an (α,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha ,\beta )$$\end{document}-approximation for RegularizedUSM if it outputs a set T such that E[f(T)+ℓ(T)]≥maxS⊆N[α·f(S)+β·ℓ(S)]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {E}}[f(T)+\ell (T)]\ge \max _{S\subseteq {\mathcal {N}}}[\alpha \cdot f(S)+\beta \cdot \ell (S)]$$\end{document}. We also consider the setting where S and T are constrained to be independent in a given matroid, which we refer to as Regularized ConstrainedSubmodular Maximization (RegularizedCSM). The special case of RegularizedCSM with monotone f has been extensively studied (Sviridenko et al. in Math Oper Res 42(4):1197–1218, 2017; Feldman in Algorithmica 83(3):853–878, 2021; Harshaw et al., in: International conference on machine learning, PMLR, 2634–2643, 2019), whereas we are aware of only one prior work that studies RegularizedCSM with non-monotone f (Lu et al. in Optimization 1–27, 2023), and that work constrains ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} to be non-positive. In this work, we provide improved (α,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha ,\beta )$$\end{document}-approximation algorithms for both RegularizedUSM and RegularizedCSM with non-monotone f. Specifically, we are the first to provide nontrivial (α,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha ,\beta )$$\end{document}-approximations for RegularizedCSM where the sign of ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} is unconstrained, and the α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} we obtain for RegularizedUSM improves over (Bodek and Feldman in Maximizing sums of non-monotone submodular and linear functions: understanding the unconstrained case, arXiv:2204.03412, 2022) for all β∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta \in (0,1)$$\end{document}. We also prove new inapproximability results for RegularizedUSM and RegularizedCSM, as well as 0.478-inapproximability for maximizing a submodular function where S and T are subject to a cardinality constraint, improving a 0.491-inapproximability result due to Oveis Gharan and Vondrak (in: Proceedings of the twenty-second annual ACM-SIAM symposium on discrete algorithms, SIAM, pp 1098–1116, 2011).
引用
收藏
页码:1080 / 1134
页数:54
相关论文
共 50 条
  • [41] Maximizing submodular or monotone approximately submodular functions by multi-objective evolutionary algorithms
    Qian, Chao
    Yu, Yang
    Tang, Ke
    Yao, Xin
    Zhou, Zhi-Hua
    ARTIFICIAL INTELLIGENCE, 2019, 275 : 279 - 294
  • [42] A 1/2-approximation algorithm for maximizing a non-monotone weak-submodular function on a bounded integer lattice
    Qingqin Nong
    Jiazhu Fang
    Suning Gong
    Dingzhu Du
    Yan Feng
    Xiaoying Qu
    Journal of Combinatorial Optimization, 2020, 39 : 1208 - 1220
  • [43] A 1/2-approximation algorithm for maximizing a non-monotone weak-submodular function on a bounded integer lattice
    Nong, Qingqin
    Fang, Jiazhu
    Gong, Suning
    Du, Dingzhu
    Feng, Yan
    Qu, Xiaoying
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2020, 39 (04) : 1208 - 1220
  • [44] Online non-monotone diminishing return submodular maximization in the bandit setting
    Ju, Jiachen
    Wang, Xiao
    Xu, Dachuan
    JOURNAL OF GLOBAL OPTIMIZATION, 2024, 90 (03) : 619 - 649
  • [45] Fast Adaptive Non-Monotone Submodular Maximization Subject to a Knapsack Constraint
    Amanatidis G.
    Fusco F.
    Lazos P.
    Leonardi S.
    Reiffenhäuser R.
    Journal of Artificial Intelligence Research, 2022, 74 : 661 - 690
  • [46] Practical and Parallelizable Algorithms for Non-Monotone Submodular Maximization with Size Constraint
    Chen, Yixin
    Kuhnle, Alan
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2022, 79 : 599 - 637
  • [47] Non-Monotone Submodular Maximization with Multiple Knapsacks in Static and Dynamic Settings
    Doskoc, Vanja
    Friedrich, Tobias
    Gobel, Andreas
    Neumann, Frank
    Neumann, Aneta
    Quinzan, Francesco
    ECAI 2020: 24TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, 325 : 435 - 442
  • [48] Non-monotone Submodular Maximization with Nearly Optimal Adaptivity and Query Complexity
    Fahrbach, Matthew
    Mirrokni, Vahab
    Zadimoghaddam, Morteza
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [49] Maximizing the Ratio of Monotone DR-Submodular Functions on Integer Lattice
    Chen, Sheng-Min-Jie
    Du, Dong-Lei
    Yang, Wen-Guo
    Gao, Sui-Xiang
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2025, 13 (01) : 142 - 160
  • [50] Fast Adaptive Non-Monotone Submodular Maximization Subject to a Knapsack Constraint
    Amanatidis, Georgios
    Fusco, Federico
    Lazos, Philip
    Leonardi, Stefano
    Reiffenhauser, Rebecca
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2022, 74 : 661 - 690