On Maximizing Sums of Non-monotone Submodular and Linear Functions

被引:0
|
作者
Benjamin Qi
机构
[1] Massachusetts Institute of Technology,Department of Electrical Engineering and Computer Science
来源
Algorithmica | 2024年 / 86卷
关键词
Submodular maximization; Regularization; Continuous greedy; Double greedy; Inapproximability;
D O I
暂无
中图分类号
学科分类号
摘要
We study the problem of Regularized Unconstrained SubmodularMaximization (RegularizedUSM) as defined by Bodek and Feldman (Maximizing sums of non-monotone submodular and linear functions: understanding the unconstrained case, arXiv:2204.03412, 2022): given query access to a non-negative submodular function f:2N→R≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:2^{{\mathcal {N}}}\rightarrow {\mathbb {R}}_{\ge 0}$$\end{document} and a linear function ℓ:2N→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell :2^{{\mathcal {N}}}\rightarrow {\mathbb {R}}$$\end{document} over the same ground set N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {N}}$$\end{document}, output a set T⊆N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T\subseteq {\mathcal {N}}$$\end{document} approximately maximizing the sum f(T)+ℓ(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(T)+\ell (T)$$\end{document}. An algorithm is said to provide an (α,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha ,\beta )$$\end{document}-approximation for RegularizedUSM if it outputs a set T such that E[f(T)+ℓ(T)]≥maxS⊆N[α·f(S)+β·ℓ(S)]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {E}}[f(T)+\ell (T)]\ge \max _{S\subseteq {\mathcal {N}}}[\alpha \cdot f(S)+\beta \cdot \ell (S)]$$\end{document}. We also consider the setting where S and T are constrained to be independent in a given matroid, which we refer to as Regularized ConstrainedSubmodular Maximization (RegularizedCSM). The special case of RegularizedCSM with monotone f has been extensively studied (Sviridenko et al. in Math Oper Res 42(4):1197–1218, 2017; Feldman in Algorithmica 83(3):853–878, 2021; Harshaw et al., in: International conference on machine learning, PMLR, 2634–2643, 2019), whereas we are aware of only one prior work that studies RegularizedCSM with non-monotone f (Lu et al. in Optimization 1–27, 2023), and that work constrains ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} to be non-positive. In this work, we provide improved (α,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha ,\beta )$$\end{document}-approximation algorithms for both RegularizedUSM and RegularizedCSM with non-monotone f. Specifically, we are the first to provide nontrivial (α,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha ,\beta )$$\end{document}-approximations for RegularizedCSM where the sign of ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} is unconstrained, and the α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} we obtain for RegularizedUSM improves over (Bodek and Feldman in Maximizing sums of non-monotone submodular and linear functions: understanding the unconstrained case, arXiv:2204.03412, 2022) for all β∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta \in (0,1)$$\end{document}. We also prove new inapproximability results for RegularizedUSM and RegularizedCSM, as well as 0.478-inapproximability for maximizing a submodular function where S and T are subject to a cardinality constraint, improving a 0.491-inapproximability result due to Oveis Gharan and Vondrak (in: Proceedings of the twenty-second annual ACM-SIAM symposium on discrete algorithms, SIAM, pp 1098–1116, 2011).
引用
收藏
页码:1080 / 1134
页数:54
相关论文
共 50 条
  • [31] Non-Monotone DR-Submodular Function Maximization
    Soma, Tasuku
    Yoshida, Yuichi
    THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 898 - 904
  • [32] Optimal Algorithms for Continuous Non-monotone Submodular and DR-Submodular Maximization
    Niazadeh, Rad
    Roughgarden, Tim
    Wang, Joshua R.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [33] Optimal algorithms for continuous non-monotone submodular and DR-submodular maximization
    Niazadeh, Rad
    Roughgarden, Tim
    Wang, Joshua R.
    Journal of Machine Learning Research, 2020, 21
  • [34] Optimal Algorithms for Continuous Non-monotone Submodular and DR-Submodular Maximization
    Niazadeh, Rad
    Roughgarden, Tim
    Wang, Joshua R.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [35] Constrained Non-monotone Submodular Maximization: Offline and Secretary Algorithms
    Gupta, Anupam
    Roth, Aaron
    Schoenebeck, Grant
    Talwar, Kunal
    INTERNET AND NETWORK ECONOMICS, 2010, 6484 : 246 - +
  • [36] A Linear-Time Streaming Algorithm for Cardinality-Constrained Maximizing Monotone Non-submodular Set Functions
    Cui, Min
    Du, Donglei
    Gai, Ling
    Yang, Ruiqi
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS, COCOA 2021, 2021, 13135 : 96 - 110
  • [37] Parallel Algorithm for Non-Monotone DR-Submodular Maximization
    Ene, Alina
    Nguyen, Huy L.
    25TH AMERICAS CONFERENCE ON INFORMATION SYSTEMS (AMCIS 2019), 2019,
  • [38] Non-monotone Submodular Maximization under Matroid and Knapsack Constraints
    Lee, Jon
    Mirrokni, Vahab S.
    Nagarajan, Viswanath
    Sviridenko, Maxim
    STOC'09: PROCEEDINGS OF THE 2009 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2009, : 323 - 332
  • [39] Parallel Algorithm for Non-Monotone DR-Submodular Maximization
    Ene, Alina
    Nguyen, Huy L.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 119, 2020, 119
  • [40] Approximation Algorithms for Size-Constrained Non-Monotone Submodular Maximization in Deterministic Linear Time
    Chen, Yixin
    Kuhnle, Alan
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 250 - 261