On Maximizing Sums of Non-monotone Submodular and Linear Functions

被引:0
|
作者
Benjamin Qi
机构
[1] Massachusetts Institute of Technology,Department of Electrical Engineering and Computer Science
来源
Algorithmica | 2024年 / 86卷
关键词
Submodular maximization; Regularization; Continuous greedy; Double greedy; Inapproximability;
D O I
暂无
中图分类号
学科分类号
摘要
We study the problem of Regularized Unconstrained SubmodularMaximization (RegularizedUSM) as defined by Bodek and Feldman (Maximizing sums of non-monotone submodular and linear functions: understanding the unconstrained case, arXiv:2204.03412, 2022): given query access to a non-negative submodular function f:2N→R≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:2^{{\mathcal {N}}}\rightarrow {\mathbb {R}}_{\ge 0}$$\end{document} and a linear function ℓ:2N→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell :2^{{\mathcal {N}}}\rightarrow {\mathbb {R}}$$\end{document} over the same ground set N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {N}}$$\end{document}, output a set T⊆N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T\subseteq {\mathcal {N}}$$\end{document} approximately maximizing the sum f(T)+ℓ(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(T)+\ell (T)$$\end{document}. An algorithm is said to provide an (α,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha ,\beta )$$\end{document}-approximation for RegularizedUSM if it outputs a set T such that E[f(T)+ℓ(T)]≥maxS⊆N[α·f(S)+β·ℓ(S)]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {E}}[f(T)+\ell (T)]\ge \max _{S\subseteq {\mathcal {N}}}[\alpha \cdot f(S)+\beta \cdot \ell (S)]$$\end{document}. We also consider the setting where S and T are constrained to be independent in a given matroid, which we refer to as Regularized ConstrainedSubmodular Maximization (RegularizedCSM). The special case of RegularizedCSM with monotone f has been extensively studied (Sviridenko et al. in Math Oper Res 42(4):1197–1218, 2017; Feldman in Algorithmica 83(3):853–878, 2021; Harshaw et al., in: International conference on machine learning, PMLR, 2634–2643, 2019), whereas we are aware of only one prior work that studies RegularizedCSM with non-monotone f (Lu et al. in Optimization 1–27, 2023), and that work constrains ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} to be non-positive. In this work, we provide improved (α,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha ,\beta )$$\end{document}-approximation algorithms for both RegularizedUSM and RegularizedCSM with non-monotone f. Specifically, we are the first to provide nontrivial (α,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha ,\beta )$$\end{document}-approximations for RegularizedCSM where the sign of ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} is unconstrained, and the α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} we obtain for RegularizedUSM improves over (Bodek and Feldman in Maximizing sums of non-monotone submodular and linear functions: understanding the unconstrained case, arXiv:2204.03412, 2022) for all β∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta \in (0,1)$$\end{document}. We also prove new inapproximability results for RegularizedUSM and RegularizedCSM, as well as 0.478-inapproximability for maximizing a submodular function where S and T are subject to a cardinality constraint, improving a 0.491-inapproximability result due to Oveis Gharan and Vondrak (in: Proceedings of the twenty-second annual ACM-SIAM symposium on discrete algorithms, SIAM, pp 1098–1116, 2011).
引用
收藏
页码:1080 / 1134
页数:54
相关论文
共 50 条
  • [1] On Maximizing Sums of Non-monotone Submodular and Linear Functions
    Qi, Benjamin
    ALGORITHMICA, 2024, 86 (04) : 1080 - 1134
  • [2] Maximizing non-monotone submodular functions
    Feige, Uriel
    Mirrokni, Vahab S.
    Vondrdak, Jan
    48TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2007, : 461 - +
  • [3] MAXIMIZING NON-MONOTONE SUBMODULAR FUNCTIONS
    Feige, Uriel
    Mirrokni, Vahab S.
    Vondrak, Jan
    SIAM JOURNAL ON COMPUTING, 2011, 40 (04) : 1133 - 1153
  • [4] A Survey on Double Greedy Algorithms for Maximizing Non-monotone Submodular Functions
    Nong, Qingqin
    Gong, Suning
    Fang, Qizhi
    Du, Dingzhu
    COMPLEXITY AND APPROXIMATION: IN MEMORY OF KER-I KO, 2020, 12000 : 172 - 186
  • [5] On maximizing monotone or non-monotone k-submodular functions with the intersection of knapsack and matroid constraints
    Kemin Yu
    Min Li
    Yang Zhou
    Qian Liu
    Journal of Combinatorial Optimization, 2023, 45
  • [6] On maximizing monotone or non-monotone k-submodular functions with the intersection of knapsack and matroid constraints
    Yu, Kemin
    Li, Min
    Zhou, Yang
    Liu, Qian
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2023, 45 (03)
  • [7] Approximation algorithm of maximizing non-monotone non-submodular functions under knapsack constraint
    Shi, Yishuo
    Lai, Xiaoyan
    THEORETICAL COMPUTER SCIENCE, 2024, 990
  • [8] Maximizing non-monotone submodular set functions subject to different constraints: Combined algorithms
    Fadaei, Salman
    Fazli, MohammadAmin
    Safari, MohammadAli
    OPERATIONS RESEARCH LETTERS, 2011, 39 (06) : 447 - 451
  • [9] Maximizing Stochastic Monotone Submodular Functions
    Asadpour, Arash
    Nazerzadeh, Hamid
    MANAGEMENT SCIENCE, 2016, 62 (08) : 2374 - 2391
  • [10] Non-Monotone Adaptive Submodular Maximization
    Gotovos, Alkis
    Karbasi, Amin
    Krause, Andreas
    PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), 2015, : 1996 - 2003