On maximizing monotone or non-monotone k-submodular functions with the intersection of knapsack and matroid constraints

被引:0
|
作者
Kemin Yu
Min Li
Yang Zhou
Qian Liu
机构
[1] Shandong Normal University,School of Mathematics and Statistics
来源
关键词
-Submodularity; Knapsack constraint; Matroid constraint; Approximation algorithm; 90C27; 68W40; 68W25;
D O I
暂无
中图分类号
学科分类号
摘要
A k-submodular function is a generalization of a submodular function. The definition domain of a k-submodular function is a collection of k-disjoint subsets instead of simple subsets of ground set. In this paper, we consider the maximization of a k-submodular function with the intersection of a knapsack and m matroid constraints. When the k-submodular function is monotone, we use a special analytical method to get an approximation ratio 1m+2(1-e-(m+2))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{m+2}(1-e^{-(m+2)})$$\end{document} for a nested greedy and local search algorithm. For non-monotone case, we can obtain an approximate ratio 1m+3(1-e-(m+3))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{m+3}(1-e^{-(m+3)})$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] On maximizing monotone or non-monotone k-submodular functions with the intersection of knapsack and matroid constraints
    Yu, Kemin
    Li, Min
    Zhou, Yang
    Liu, Qian
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2023, 45 (03)
  • [2] Non-monotone Submodular Maximization under Matroid and Knapsack Constraints
    Lee, Jon
    Mirrokni, Vahab S.
    Nagarajan, Viswanath
    Sviridenko, Maxim
    STOC'09: PROCEEDINGS OF THE 2009 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2009, : 323 - 332
  • [3] On maximizing a monotone k-submodular function subject to a matroid constraint
    Sakaue, Shinsaku
    DISCRETE OPTIMIZATION, 2017, 23 : 105 - 113
  • [4] Maximizing non-monotone submodular functions
    Feige, Uriel
    Mirrokni, Vahab S.
    Vondrdak, Jan
    48TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2007, : 461 - +
  • [5] MAXIMIZING NON-MONOTONE SUBMODULAR FUNCTIONS
    Feige, Uriel
    Mirrokni, Vahab S.
    Vondrak, Jan
    SIAM JOURNAL ON COMPUTING, 2011, 40 (04) : 1133 - 1153
  • [6] On maximizing a monotone k-submodular function under a knapsack constraint
    Tang, Zhongzheng
    Wang, Chenhao
    Chan, Hau
    OPERATIONS RESEARCH LETTERS, 2022, 50 (01) : 28 - 31
  • [7] Monotone k-submodular secretary problems: Cardinality and knapsack constraints
    Tang, Zhongzheng
    Wang, Chenhao
    Chan, Hau
    THEORETICAL COMPUTER SCIENCE, 2022, 921 : 86 - 99
  • [8] On Maximizing Sums of Non-monotone Submodular and Linear Functions
    Qi, Benjamin
    ALGORITHMICA, 2024, 86 (04) : 1080 - 1134
  • [9] On Maximizing Sums of Non-monotone Submodular and Linear Functions
    Benjamin Qi
    Algorithmica, 2024, 86 : 1080 - 1134
  • [10] Approximation algorithm of maximizing non-monotone non-submodular functions under knapsack constraint
    Shi, Yishuo
    Lai, Xiaoyan
    THEORETICAL COMPUTER SCIENCE, 2024, 990