On maximizing monotone or non-monotone k-submodular functions with the intersection of knapsack and matroid constraints

被引:0
|
作者
Kemin Yu
Min Li
Yang Zhou
Qian Liu
机构
[1] Shandong Normal University,School of Mathematics and Statistics
来源
关键词
-Submodularity; Knapsack constraint; Matroid constraint; Approximation algorithm; 90C27; 68W40; 68W25;
D O I
暂无
中图分类号
学科分类号
摘要
A k-submodular function is a generalization of a submodular function. The definition domain of a k-submodular function is a collection of k-disjoint subsets instead of simple subsets of ground set. In this paper, we consider the maximization of a k-submodular function with the intersection of a knapsack and m matroid constraints. When the k-submodular function is monotone, we use a special analytical method to get an approximation ratio 1m+2(1-e-(m+2))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{m+2}(1-e^{-(m+2)})$$\end{document} for a nested greedy and local search algorithm. For non-monotone case, we can obtain an approximate ratio 1m+3(1-e-(m+3))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{m+3}(1-e^{-(m+3)})$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [41] Approximations for Monotone and Nonmonotone Submodular Maximization with Knapsack Constraints
    Kulik, Ariel
    Shachnai, Hadas
    Tamir, Tami
    MATHEMATICS OF OPERATIONS RESEARCH, 2013, 38 (04) : 729 - 739
  • [42] Linear Query Approximation Algorithms for Non-monotone Submodular Maximization under Knapsack Constraint
    Pham, Canh V.
    Tran, Tan D.
    Ha, Dung T. K.
    Thai, My T.
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 4127 - 4135
  • [43] Group fairness in non-monotone submodular maximization
    Jing Yuan
    Shaojie Tang
    Journal of Combinatorial Optimization, 2023, 45
  • [44] Group fairness in non-monotone submodular maximization
    Yuan, Jing
    Tang, Shaojie
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2023, 45 (03)
  • [45] A fast algorithm for maximizing a non-monotone DR-submodular integer lattice function
    Nong, Qingqin
    Fang, Jiazhu
    Gong, Suning
    Feng, Yan
    Qu, Xiaoying
    THEORETICAL COMPUTER SCIENCE, 2020, 840 : 177 - 186
  • [46] MAXIMIZING A MONOTONE SUBMODULAR FUNCTION WITH A BOUNDED CURVATURE UNDER A KNAPSACK CONSTRAINT
    Yoshida, Yuichi
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2019, 33 (03) : 1452 - 1471
  • [47] Maximizing monotone submodular functions over the integer lattice
    Tasuku Soma
    Yuichi Yoshida
    Mathematical Programming, 2018, 172 : 539 - 563
  • [48] Maximizing Monotone Submodular Functions over the Integer Lattice
    Soma, Tasuku
    Yoshida, Yuichi
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2016, 2016, 9682 : 325 - 336
  • [49] Maximizing monotone submodular functions over the integer lattice
    Soma, Tasuku
    Yoshida, Yuichi
    MATHEMATICAL PROGRAMMING, 2018, 172 (1-2) : 539 - 563
  • [50] Non-Submodular Maximization with Matroid and Knapsack Constraints
    Wang, Yijing
    Du, Donglei
    Jiang, Yanjun
    Zhang, Xianzhao
    ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2021, 38 (05)