On maximizing monotone or non-monotone k-submodular functions with the intersection of knapsack and matroid constraints

被引:0
|
作者
Kemin Yu
Min Li
Yang Zhou
Qian Liu
机构
[1] Shandong Normal University,School of Mathematics and Statistics
来源
关键词
-Submodularity; Knapsack constraint; Matroid constraint; Approximation algorithm; 90C27; 68W40; 68W25;
D O I
暂无
中图分类号
学科分类号
摘要
A k-submodular function is a generalization of a submodular function. The definition domain of a k-submodular function is a collection of k-disjoint subsets instead of simple subsets of ground set. In this paper, we consider the maximization of a k-submodular function with the intersection of a knapsack and m matroid constraints. When the k-submodular function is monotone, we use a special analytical method to get an approximation ratio 1m+2(1-e-(m+2))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{m+2}(1-e^{-(m+2)})$$\end{document} for a nested greedy and local search algorithm. For non-monotone case, we can obtain an approximate ratio 1m+3(1-e-(m+3))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{m+3}(1-e^{-(m+3)})$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [11] Maximizing non-monotone submodular set functions subject to different constraints: Combined algorithms
    Fadaei, Salman
    Fazli, MohammadAmin
    Safari, MohammadAli
    OPERATIONS RESEARCH LETTERS, 2011, 39 (06) : 447 - 451
  • [12] k-Submodular Maximization with a Knapsack Constraint and p Matroid Constraints
    Liu, Qian
    Yu, Kemin
    Li, Min
    Zhou, Yang
    TSINGHUA SCIENCE AND TECHNOLOGY, 2023, 28 (05): : 896 - 905
  • [13] Monotone k-Submodular Function Maximization with Size Constraints
    Ohsaka, Naoto
    Yoshida, Yuichi
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [14] A Survey on Double Greedy Algorithms for Maximizing Non-monotone Submodular Functions
    Nong, Qingqin
    Gong, Suning
    Fang, Qizhi
    Du, Dingzhu
    COMPLEXITY AND APPROXIMATION: IN MEMORY OF KER-I KO, 2020, 12000 : 172 - 186
  • [15] Differentially Private Monotone Submodular Maximization Under Matroid and Knapsack Constraints
    Sadeghi, Omid
    Fazel, Maryam
    24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130
  • [16] Algorithms for Optimizing the Ratio of Monotone k-Submodular Functions
    Chan, Hau
    Loukides, Grigorios
    Su, Zhenghui
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2020, PT III, 2021, 12459 : 3 - 19
  • [17] MAXIMIZING NONMONOTONE SUBMODULAR FUNCTIONS UNDER MATROID OR KNAPSACK CONSTRAINTS
    Lee, Jon
    Mirrokni, Vahab S.
    Nagarajan, Viswanath
    Sviridenko, Maxim
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2010, 23 (04) : 2053 - 2078
  • [18] Streaming Algorithm for Monotone k-Submodular Maximization with Cardinality Constraints
    Ene, Alina
    Nguyen, Huy L.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [19] Maximizing Approximately Non-k-Submodular Monotone Set Function with Matroid Constraint
    Jiang, Yanjun
    Wang, Yijing
    Yang, Ruiqi
    Ye, Weina
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, TAMC 2022, 2022, 13571 : 11 - 20
  • [20] Beyond pointwise submodularity: Non-monotone adaptive submodular maximization subject to knapsack and k-system constraints
    Tang, Shaojie
    THEORETICAL COMPUTER SCIENCE, 2022, 936 : 139 - 147