On maximizing monotone or non-monotone k-submodular functions with the intersection of knapsack and matroid constraints

被引:0
|
作者
Kemin Yu
Min Li
Yang Zhou
Qian Liu
机构
[1] Shandong Normal University,School of Mathematics and Statistics
来源
关键词
-Submodularity; Knapsack constraint; Matroid constraint; Approximation algorithm; 90C27; 68W40; 68W25;
D O I
暂无
中图分类号
学科分类号
摘要
A k-submodular function is a generalization of a submodular function. The definition domain of a k-submodular function is a collection of k-disjoint subsets instead of simple subsets of ground set. In this paper, we consider the maximization of a k-submodular function with the intersection of a knapsack and m matroid constraints. When the k-submodular function is monotone, we use a special analytical method to get an approximation ratio 1m+2(1-e-(m+2))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{m+2}(1-e^{-(m+2)})$$\end{document} for a nested greedy and local search algorithm. For non-monotone case, we can obtain an approximate ratio 1m+3(1-e-(m+3))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{m+3}(1-e^{-(m+3)})$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [21] Streaming Algorithms for Maximizing Monotone Submodular Functions Under a Knapsack Constraint
    Chien-Chung Huang
    Naonori Kakimura
    Yuichi Yoshida
    Algorithmica, 2020, 82 : 1006 - 1032
  • [22] Streaming Algorithms for Maximizing Monotone Submodular Functions Under a Knapsack Constraint
    Huang, Chien-Chung
    Kakimura, Naonori
    Yoshida, Yuichi
    ALGORITHMICA, 2020, 82 (04) : 1006 - 1032
  • [23] Fast Adaptive Non-Monotone Submodular Maximization Subject to a Knapsack Constraint
    Amanatidis G.
    Fusco F.
    Lazos P.
    Leonardi S.
    Reiffenhäuser R.
    Journal of Artificial Intelligence Research, 2022, 74 : 661 - 690
  • [24] MAXIMIZING A MONOTONE SUBMODULAR FUNCTION SUBJECT TO A MATROID CONSTRAINT
    Calinescu, Gruia
    Chekuri, Chandra
    Pal, Martin
    Vondrak, Jan
    SIAM JOURNAL ON COMPUTING, 2011, 40 (06) : 1740 - 1766
  • [25] Fast Adaptive Non-Monotone Submodular Maximization Subject to a Knapsack Constraint
    Amanatidis, Georgios
    Fusco, Federico
    Lazos, Philip
    Leonardi, Stefano
    Reiffenhauser, Rebecca
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2022, 74 : 661 - 690
  • [26] Maximizing Submodular or Monotone Functions Under Partition Matroid Constraints by Multi-objective Evolutionary Algorithms
    Anh Viet Do
    Neumann, Frank
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XVI, PT II, 2020, 12270 : 588 - 603
  • [27] Maximizing a monotone non-submodular function under a knapsack constraint
    Zhenning Zhang
    Bin Liu
    Yishui Wang
    Dachuan Xu
    Dongmei Zhang
    Journal of Combinatorial Optimization, 2022, 43 : 1125 - 1148
  • [28] Maximizing a monotone non-submodular function under a knapsack constraint
    Zhang, Zhenning
    Liu, Bin
    Wang, Yishui
    Xu, Dachuan
    Zhang, Dongmei
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 43 (05) : 1125 - 1148
  • [29] Maximizing Stochastic Monotone Submodular Functions
    Asadpour, Arash
    Nazerzadeh, Hamid
    MANAGEMENT SCIENCE, 2016, 62 (08) : 2374 - 2391
  • [30] Submodular Maximization under the Intersection of Matroid and Knapsack Constraints
    Gu, Yu-Ran
    Bian, Chao
    Qian, Chao
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 4, 2023, : 3959 - 3967