A semidefinite programming method for integer convex quadratic minimization

被引:0
|
作者
Jaehyun Park
Stephen Boyd
机构
[1] Stanford University,
[2] Stanford University,undefined
来源
Optimization Letters | 2018年 / 12卷
关键词
Convex optimization; Integer quadratic programming; Mixed-integer programming; Semidefinite relaxation; Branch-and-bound;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the NP-hard problem of minimizing a convex quadratic function over the integer lattice Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{Z}}^n$$\end{document}. We present a simple semidefinite programming (SDP) relaxation for obtaining a nontrivial lower bound on the optimal value of the problem. By interpreting the solution to the SDP relaxation probabilistically, we obtain a randomized algorithm for finding good suboptimal solutions, and thus an upper bound on the optimal value. The effectiveness of the method is shown for numerical problem instances of various sizes.
引用
收藏
页码:499 / 518
页数:19
相关论文
共 50 条
  • [41] An Effective Branch-and-Bound Algorithm for Convex Quadratic Integer Programming
    Buchheim, Christoph
    Caprara, Alberto
    Lodi, Andrea
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, PROCEEDINGS, 2010, 6080 : 285 - +
  • [42] WOLFE METHOD AND DANTZIG METHOD IN CONVEX QUADRATIC PROGRAMMING
    BOUZITAT, J
    RAIRO-RECHERCHE OPERATIONNELLE-OPERATIONS RESEARCH, 1979, 13 (02): : 151 - 184
  • [43] Positive semidefinite penalty method for quadratically constrained quadratic programming
    Gu, Ran
    Du, Qiang
    Yuan, Ya-xiang
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2021, 41 (04) : 2488 - 2515
  • [44] Convex approximations in stochastic programming by semidefinite programming
    Deak, Istvan
    Polik, Imre
    Prekopa, Andras
    Terlaky, Tamas
    ANNALS OF OPERATIONS RESEARCH, 2012, 200 (01) : 171 - 182
  • [45] A stochastic approximation method for convex programming with many semidefinite constraints
    Pang Li-Ping
    Zhang Ming-Kun
    Xiao Xian-Tao
    OPTIMIZATION METHODS & SOFTWARE, 2023, 38 (01): : 34 - 58
  • [46] An Auxiliary Function Method for Global Minimization in Integer Programming
    Lin, Hongwei
    Wang, Yuping
    Wang, Xiaoli
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2011, 2011
  • [47] Convex approximations in stochastic programming by semidefinite programming
    István Deák
    Imre Pólik
    András Prékopa
    Tamás Terlaky
    Annals of Operations Research, 2012, 200 : 171 - 182
  • [48] A NUMERICAL METHOD FOR SOLVING QUADRATIC INTEGER PROGRAMMING PROBLEM
    Tat'yankin, V. M.
    Shitselov, A., V
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2019, 12 (03): : 130 - 139
  • [49] Using dual relaxations in multiobjective mixed-integer convex quadratic programming
    De Santis, Marianna
    Eichfelder, Gabriele
    Patria, Daniele
    Warnow, Leo
    JOURNAL OF GLOBAL OPTIMIZATION, 2024,
  • [50] Complex quadratic optimization and semidefinite programming
    Zhang, SZ
    Huang, YW
    SIAM JOURNAL ON OPTIMIZATION, 2006, 16 (03) : 871 - 890