A semidefinite programming method for integer convex quadratic minimization

被引:0
|
作者
Jaehyun Park
Stephen Boyd
机构
[1] Stanford University,
[2] Stanford University,undefined
来源
Optimization Letters | 2018年 / 12卷
关键词
Convex optimization; Integer quadratic programming; Mixed-integer programming; Semidefinite relaxation; Branch-and-bound;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the NP-hard problem of minimizing a convex quadratic function over the integer lattice Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{Z}}^n$$\end{document}. We present a simple semidefinite programming (SDP) relaxation for obtaining a nontrivial lower bound on the optimal value of the problem. By interpreting the solution to the SDP relaxation probabilistically, we obtain a randomized algorithm for finding good suboptimal solutions, and thus an upper bound on the optimal value. The effectiveness of the method is shown for numerical problem instances of various sizes.
引用
收藏
页码:499 / 518
页数:19
相关论文
共 50 条
  • [11] A sequential quadratically constrained quadratic programming method for differentiable convex minimization
    Fukushima, M
    Luo, ZQ
    Tseng, P
    SIAM JOURNAL ON OPTIMIZATION, 2003, 13 (04) : 1098 - 1119
  • [12] Estimation of Positive Semidefinite Correlation Matrices by Using Convex Quadratic Semidefinite Programming
    Fushiki, Tadayoshi
    NEURAL COMPUTATION, 2009, 21 (07) : 2028 - 2048
  • [13] A Coordinate Ascent Method for Solving Semidefinite Relaxations of Non-convex Quadratic Integer Programs
    Buchheim, Christoph
    Montenegro, Maribel
    Wiegele, Angelika
    COMBINATORIAL OPTIMIZATION, ISCO 2016, 2016, 9849 : 110 - 122
  • [14] QSDPNAL: a two-phase augmented Lagrangian method for convex quadratic semidefinite programming
    Li X.
    Sun D.
    Toh K.-C.
    Mathematical Programming Computation, 2018, 10 (4) : 703 - 743
  • [15] On the gap between the quadratic integer programming problem and its semidefinite relaxation
    U. Malik
    I.M. Jaimoukha
    G.D. Halikias
    S.K. Gungah
    Mathematical Programming, 2006, 107 : 505 - 515
  • [16] On the gap between the quadratic integer programming problem and its semidefinite relaxation
    Malik, U
    Jaimoukha, IM
    Halikias, GD
    Gungah, SK
    MATHEMATICAL PROGRAMMING, 2006, 107 (03) : 505 - 515
  • [17] A REVISED SEQUENTIAL QUADRATIC SEMIDEFINITE PROGRAMMING METHOD FOR NONLINEAR SEMIDEFINITE OPTIMIZATION
    Okabe, Kosuke
    Yamakawa, Yuya
    Fukuda, Ellen hidemi
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2023, 19 (10) : 7777 - 7794
  • [18] A Conditional Gradient Framework for Composite Convex Minimization with Applications to Semidefinite Programming
    Yurtsever, Alp
    Fercoq, Olivier
    Locatello, Francesco
    Cevher, Volkan
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [19] METHOD FOR MIXED INTEGER CONVEX PROGRAMMING
    BURKARD, RE
    ENGE, H
    COMPUTING, 1975, 14 (04) : 389 - 396
  • [20] A FEASIBLE ACTIVE SET METHOD WITH REOPTIMIZATION FOR CONVEX QUADRATIC MIXED-INTEGER PROGRAMMING
    Buchheim, Christoph
    de Santis, Marianna
    Lucidi, Stefano
    Rinaldi, Francesco
    Trieu, Long
    SIAM JOURNAL ON OPTIMIZATION, 2016, 26 (03) : 1695 - 1714