A semidefinite programming method for integer convex quadratic minimization

被引:0
|
作者
Jaehyun Park
Stephen Boyd
机构
[1] Stanford University,
[2] Stanford University,undefined
来源
Optimization Letters | 2018年 / 12卷
关键词
Convex optimization; Integer quadratic programming; Mixed-integer programming; Semidefinite relaxation; Branch-and-bound;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the NP-hard problem of minimizing a convex quadratic function over the integer lattice Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{Z}}^n$$\end{document}. We present a simple semidefinite programming (SDP) relaxation for obtaining a nontrivial lower bound on the optimal value of the problem. By interpreting the solution to the SDP relaxation probabilistically, we obtain a randomized algorithm for finding good suboptimal solutions, and thus an upper bound on the optimal value. The effectiveness of the method is shown for numerical problem instances of various sizes.
引用
收藏
页码:499 / 518
页数:19
相关论文
共 50 条
  • [21] A polynomial case of convex integer quadratic programming problems with box integer constraints
    Chunli Liu
    Jianjun Gao
    Journal of Global Optimization, 2015, 62 : 661 - 674
  • [22] A polynomial case of convex integer quadratic programming problems with box integer constraints
    Liu, Chunli
    Gao, Jianjun
    JOURNAL OF GLOBAL OPTIMIZATION, 2015, 62 (04) : 661 - 674
  • [23] Approximating Non-convex Quadratic Programs by Semidefinite and Copositive Programming
    Povh, Janez
    Rendl, Franz
    KOI 2006: 11TH INTERNATIONAL CONFERENCE ON OPERATIONAL RESEARCH, PROCEEDINGS, 2008, : 35 - +
  • [24] A DC programming approach for mixed integer convex quadratic programs
    Niu, Yi-Shuai
    Tao Pham Dinh
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND SYSTEMS MANAGEMENT (IESM'2011): INNOVATIVE APPROACHES AND TECHNOLOGIES FOR NETWORKED MANUFACTURING ENTERPRISES MANAGEMENT, 2011, : 222 - 231
  • [25] Convex relaxation and Lagrangian decomposition for indefinite integer quadratic programming
    Sun, X. L.
    Li, J. L.
    Luo, H. Z.
    OPTIMIZATION, 2010, 59 (05) : 627 - 641
  • [26] Integer sequences and semidefinite programming
    Lovász, L
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2000, 56 (3-4): : 475 - 479
  • [27] Efficient Rank Minimization to Tighten Semidefinite Programming for Unconstrained Binary Quadratic Optimization
    Pogodin, Roman
    Krechetov, Mikhail
    Maximov, Yury
    2017 55TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2017, : 1153 - 1159
  • [28] A stabilized sequential quadratic semidefinite programming method for degenerate nonlinear semidefinite programs
    Yuya Yamakawa
    Takayuki Okuno
    Computational Optimization and Applications, 2022, 83 : 1027 - 1064
  • [29] A sequential quadratic penalty method for nonlinear semidefinite programming
    Huang, XX
    Yang, XQ
    Teo, KL
    OPTIMIZATION, 2003, 52 (06) : 715 - 738
  • [30] A stabilized sequential quadratic semidefinite programming method for degenerate nonlinear semidefinite programs
    Yamakawa, Yuya
    Okuno, Takayuki
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2022, 83 (03) : 1027 - 1064