A semidefinite programming method for integer convex quadratic minimization

被引:0
|
作者
Jaehyun Park
Stephen Boyd
机构
[1] Stanford University,
[2] Stanford University,undefined
来源
Optimization Letters | 2018年 / 12卷
关键词
Convex optimization; Integer quadratic programming; Mixed-integer programming; Semidefinite relaxation; Branch-and-bound;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the NP-hard problem of minimizing a convex quadratic function over the integer lattice Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{Z}}^n$$\end{document}. We present a simple semidefinite programming (SDP) relaxation for obtaining a nontrivial lower bound on the optimal value of the problem. By interpreting the solution to the SDP relaxation probabilistically, we obtain a randomized algorithm for finding good suboptimal solutions, and thus an upper bound on the optimal value. The effectiveness of the method is shown for numerical problem instances of various sizes.
引用
收藏
页码:499 / 518
页数:19
相关论文
共 50 条
  • [31] Unbounded convex sets for non-convex mixed-integer quadratic programming
    Burer, Samuel
    Letchford, Adam N.
    MATHEMATICAL PROGRAMMING, 2014, 143 (1-2) : 231 - 256
  • [32] Unbounded convex sets for non-convex mixed-integer quadratic programming
    Samuel Burer
    Adam N. Letchford
    Mathematical Programming, 2014, 143 : 231 - 256
  • [33] A quadratic programming method for interconnection crosstalk minimization
    Lai, YT
    Kao, CC
    Shieh, WC
    ISCAS '99: PROCEEDINGS OF THE 1999 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL 6: CIRCUITS ANALYSIS, DESIGN METHODS, AND APPLICATIONS, 1999, : 270 - 273
  • [34] Quadratic programming method for interconnection crosstalk minimization
    Natl Cheng Kung Univ, Tainan, Taiwan
    Proc IEEE Int Symp Circuits Syst, (VI-270-VI-273):
  • [35] An effective branch-and-bound algorithm for convex quadratic integer programming
    Christoph Buchheim
    Alberto Caprara
    Andrea Lodi
    Mathematical Programming, 2012, 135 : 369 - 395
  • [36] An effective branch-and-bound algorithm for convex quadratic integer programming
    Buchheim, Christoph
    Caprara, Alberto
    Lodi, Andrea
    MATHEMATICAL PROGRAMMING, 2012, 135 (1-2) : 369 - 395
  • [37] Stochastic level-value approximation for quadratic integer convex programming
    Peng Zheng
    Wu Dong-hua
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2008, 29 (06) : 801 - 809
  • [38] Stochastic level-value approximation for quadratic integer convex programming
    彭拯
    邬冬华
    AppliedMathematicsandMechanics(EnglishEdition), 2008, (06) : 801 - 809
  • [39] Stochastic level-value approximation for quadratic integer convex programming
    Zheng Peng
    Dong-hua Wu
    Applied Mathematics and Mechanics, 2008, 29
  • [40] On the separation of split inequalities for non-convex quadratic integer programming
    Buchheim, Christoph
    Traversi, Emiliano
    DISCRETE OPTIMIZATION, 2015, 15 : 1 - 14