A semidefinite programming method for integer convex quadratic minimization

被引:0
|
作者
Jaehyun Park
Stephen Boyd
机构
[1] Stanford University,
[2] Stanford University,undefined
来源
Optimization Letters | 2018年 / 12卷
关键词
Convex optimization; Integer quadratic programming; Mixed-integer programming; Semidefinite relaxation; Branch-and-bound;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the NP-hard problem of minimizing a convex quadratic function over the integer lattice Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{Z}}^n$$\end{document}. We present a simple semidefinite programming (SDP) relaxation for obtaining a nontrivial lower bound on the optimal value of the problem. By interpreting the solution to the SDP relaxation probabilistically, we obtain a randomized algorithm for finding good suboptimal solutions, and thus an upper bound on the optimal value. The effectiveness of the method is shown for numerical problem instances of various sizes.
引用
收藏
页码:499 / 518
页数:19
相关论文
共 50 条
  • [1] A semidefinite programming method for integer convex quadratic minimization
    Park, Jaehyun
    Boyd, Stephen
    OPTIMIZATION LETTERS, 2018, 12 (03) : 499 - 518
  • [2] Semidefinite relaxations for non-convex quadratic mixed-integer programming
    Buchheim, Christoph
    Wiegele, Angelika
    MATHEMATICAL PROGRAMMING, 2013, 141 (1-2) : 435 - 452
  • [3] Semidefinite relaxations for non-convex quadratic mixed-integer programming
    Christoph Buchheim
    Angelika Wiegele
    Mathematical Programming, 2013, 141 : 435 - 452
  • [4] An inexact spectral bundle method for convex quadratic semidefinite programming
    Lin, Huiling
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2012, 53 (01) : 45 - 89
  • [5] An inexact spectral bundle method for convex quadratic semidefinite programming
    Huiling Lin
    Computational Optimization and Applications, 2012, 53 : 45 - 89
  • [6] Convex quadratic and semidefinite programming relaxations in scheduling
    Skutella, M
    JOURNAL OF THE ACM, 2001, 48 (02) : 206 - 242
  • [7] Modified alternating direction method of multipliers for convex quadratic semidefinite programming
    Chang, Xiaokai
    Liu, Sanyang
    Li, Xu
    NEUROCOMPUTING, 2016, 214 : 575 - 586
  • [8] Eigenvalue, quadratic programming, and semidefinite programming relaxations for a cut minimization problem
    Ting Kei Pong
    Hao Sun
    Ningchuan Wang
    Henry Wolkowicz
    Computational Optimization and Applications, 2016, 63 : 333 - 364
  • [9] Eigenvalue, quadratic programming, and semidefinite programming relaxations for a cut minimization problem
    Pong, Ting Kei
    Sun, Hao
    Wang, Ningchuan
    Wolkowicz, Henry
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2016, 63 (02) : 333 - 364
  • [10] ELLIPSOID BOUNDS FOR CONVEX QUADRATIC INTEGER PROGRAMMING
    Buchheim, Christoph
    Huebner, Ruth
    Schoebel, Anita
    SIAM JOURNAL ON OPTIMIZATION, 2015, 25 (02) : 741 - 769