Foliation of the phase space for the Kepler problem with anisotropic perturbations

被引:0
|
作者
Criollo A. [1 ]
Pérez-Chavela E. [1 ]
机构
[1] Universidad Autónoma Metropolitana-Iztapala, Departamento de Matemáticas, Col. Vicentina, D.F., 09340
关键词
Angular and radial region; Anisotropic term;
D O I
10.1007/s12346-008-0025-y
中图分类号
学科分类号
摘要
We study a particular perturbation of the Kepler problem given by the potential U(r,θ)=-1/r-b/r2(1+∈cos2θ), where b and ε are the perturbation parameters. This problem has two first integrals in involution: the first one is the well known Hamiltonian H=(p2r+p2θ/r2)-1/r-b/r2(1+∈cos2θ); the second one is given by G=p2θ/2-b/(1+∈cos2θ). The sets H -1(h),G -1(g) and H-1(h){n-ary intersection}G-1(g) are invariant under the flow of the Hamiltonian system. From here we obtain a nice foliation of the phase space. In this paper we study the topology of the above foliation. © 2008 Birkhäuser Verlag Basel/Switzerland.
引用
收藏
页码:435 / 449
页数:14
相关论文
共 50 条
  • [1] Periodic orbits for anisotropic perturbations of the Kepler problem
    Escalona-Buendia, A. H.
    Perez-Chavela, E.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (03) : 591 - 601
  • [2] PERIODIC ORBITS OF THE SPATIAL ANISOTROPIC KEPLER PROBLEM WITH ANISOTROPIC PERTURBATIONS
    Li, Mengyuan
    Liu, Qihuai
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2021,
  • [3] The Kepler problem with anisotropic perturbations -: art. no. 072701
    Diacu, F
    Pérez-Chavela, E
    Santoprete, M
    JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (07)
  • [4] Radial periodic perturbations of the Kepler problem
    Fonda, Alessandro
    Gallo, Anna Chiara
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2017, 129 (03): : 257 - 268
  • [5] Hamiltonian Dynamics for the Kepler Problem in a Deformed Phase Space
    Hounkonnou, Mahouton Norbert
    Landalidji, Mahougnon Justin
    GEOMETRIC METHODS IN PHYSICS XXXVII, 2020, : 34 - 48
  • [6] Perturbations of the Kepler Problem in Global Coordinates
    Bruno Cordani
    Celestial Mechanics and Dynamical Astronomy, 2000, 77 : 185 - 200
  • [7] Perturbations of the Kepler Problem in global coordinates
    Cordani, B
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2000, 77 (03): : 185 - 200
  • [8] Radial periodic perturbations of the Kepler problem
    Alessandro Fonda
    Anna Chiara Gallo
    Celestial Mechanics and Dynamical Astronomy, 2017, 129 : 257 - 268
  • [9] Soliton perturbations and the random Kepler problem
    Abdullaev, FK
    Bronski, JC
    Papanicolaou, G
    PHYSICA D-NONLINEAR PHENOMENA, 2000, 135 (3-4) : 369 - 386
  • [10] COLLISION ORBITS IN ANISOTROPIC KEPLER PROBLEM
    DEVANEY, RL
    INVENTIONES MATHEMATICAE, 1978, 45 (03) : 221 - 251