PERIODIC ORBITS OF THE SPATIAL ANISOTROPIC KEPLER PROBLEM WITH ANISOTROPIC PERTURBATIONS

被引:0
|
作者
Li, Mengyuan [1 ,2 ]
Liu, Qihuai [3 ,4 ]
机构
[1] Guilin Univ Elect Technol, Sch Math & Comp Sci, Guilin 541002, Peoples R China
[2] Chengdu Modern Vocat & Tech Sch, Chengdu 610000, Peoples R China
[3] Guilin Univ Elect Technol, Guangxi Coll & Univ Key Lab Data Anal & Computat, Sch Math & Comp Sci, Guilin 541002, Peoples R China
[4] Guangxi Normal Univ, Ctr Appl Math Guangxi, Guilin 541004, Peoples R China
关键词
Periodic orbit; averaging theory; residue theorem; spatial anisotropic Kepler problem; 2-BODY PROBLEM; GRAVITATION; PRINCIPLE; STABILITY; SYSTEMS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the periodic orbits of the spatial anisotropic Kepler problem with anisotropic perturbations on each negative energy surface, where the perturbations are homogeneous functions of arbitrary integer degree p. By choosing the different ranges of a parameter beta, we show that there exist at least 6 periodic solutions for p > 1, while there exist at least 2 periodic solutions for p <= 1 on each negative energy surface. The proofs of main results are based on symplectic Delaunay coordinates, residue theorem, and averaging theory.
引用
收藏
页数:42
相关论文
共 50 条
  • [1] Periodic orbits for anisotropic perturbations of the Kepler problem
    Escalona-Buendia, A. H.
    Perez-Chavela, E.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (03) : 591 - 601
  • [2] Periodic Orbits of the Planar Anisotropic Kepler Problem
    Abouelmagd, Elbaz I.
    Llibre, Jaume
    Garcia Guirao, Juan Luis
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (03):
  • [3] Periodic Orbits of the Anisotropic Kepler Problem with Quasihomogeneous Potentials
    Lopez, Miguel A.
    Martinez, Raquel
    Vera, Juan A.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (14):
  • [4] Periodic orbits of the planar anisotropic generalized Kepler problem
    Llibre, Jaume
    Valls, Claudia
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (04)
  • [5] Variational proof of the existence of periodic orbits in the anisotropic Kepler problem
    Shota Iguchi
    Mitsuru Shibayama
    Celestial Mechanics and Dynamical Astronomy, 2023, 135
  • [6] Variational proof of the existence of periodic orbits in the anisotropic Kepler problem
    Iguchi, Shota
    Shibayama, Mitsuru
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2023, 135 (03):
  • [7] Periodic orbits of the spatial anisotropic Manev problem
    Llibre, Jaume
    Makhlouf, Ammar
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (12)
  • [8] COLLISION ORBITS IN ANISOTROPIC KEPLER PROBLEM
    DEVANEY, RL
    INVENTIONES MATHEMATICAE, 1978, 45 (03) : 221 - 251
  • [10] Periodic orbit quantization of the anisotropic Kepler problem
    Christiansen, Freddy
    Cvitanovic, Predrag
    CHAOS, 1992, 2 (01) : 61 - 69