PERIODIC ORBITS OF THE SPATIAL ANISOTROPIC KEPLER PROBLEM WITH ANISOTROPIC PERTURBATIONS

被引:0
|
作者
Li, Mengyuan [1 ,2 ]
Liu, Qihuai [3 ,4 ]
机构
[1] Guilin Univ Elect Technol, Sch Math & Comp Sci, Guilin 541002, Peoples R China
[2] Chengdu Modern Vocat & Tech Sch, Chengdu 610000, Peoples R China
[3] Guilin Univ Elect Technol, Guangxi Coll & Univ Key Lab Data Anal & Computat, Sch Math & Comp Sci, Guilin 541002, Peoples R China
[4] Guangxi Normal Univ, Ctr Appl Math Guangxi, Guilin 541004, Peoples R China
关键词
Periodic orbit; averaging theory; residue theorem; spatial anisotropic Kepler problem; 2-BODY PROBLEM; GRAVITATION; PRINCIPLE; STABILITY; SYSTEMS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the periodic orbits of the spatial anisotropic Kepler problem with anisotropic perturbations on each negative energy surface, where the perturbations are homogeneous functions of arbitrary integer degree p. By choosing the different ranges of a parameter beta, we show that there exist at least 6 periodic solutions for p > 1, while there exist at least 2 periodic solutions for p <= 1 on each negative energy surface. The proofs of main results are based on symplectic Delaunay coordinates, residue theorem, and averaging theory.
引用
收藏
页数:42
相关论文
共 50 条
  • [21] Periodic Orbits of the Planar Anisotropic Manev Problem and of the Perturbed Hydrogen Atom Problem
    Llibre, Jaume
    Yuan, Pengfei
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2019, 18 (03) : 969 - 986
  • [22] Periodic Orbits of the Planar Anisotropic Manev Problem and of the Perturbed Hydrogen Atom Problem
    Jaume Llibre
    Pengfei Yuan
    Qualitative Theory of Dynamical Systems, 2019, 18 : 969 - 986
  • [23] Stability and instability in the anisotropic Kepler problem
    Contopoulos, G
    Harsoula, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (41): : 8897 - 8920
  • [24] ANISOTROPIC KEPLER PROBLEM IN 2 DIMENSIONS
    GUTZWILLER, MC
    JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (01) : 139 - 152
  • [25] Orbit systematics in anisotropic Kepler problem
    Kubo, Kazuhiro
    Shimada, Tokuzo
    ARTIFICIAL LIFE AND ROBOTICS, 2008, 13 (01) : 218 - 222
  • [26] An anisotropic quasilinear problem with perturbations
    Jie Rui
    Jianguo Si
    Boundary Value Problems, 2013
  • [27] An anisotropic quasilinear problem with perturbations
    Rui, Jie
    Si, Jianguo
    BOUNDARY VALUE PROBLEMS, 2013,
  • [28] PERIODIC ORBITS IN THE KEPLER-HEISENBERG PROBLEM
    Shanbrom, Corey
    JOURNAL OF GEOMETRIC MECHANICS, 2014, 6 (02): : 261 - 278
  • [29] Periodic solutions of symmetric perturbations of the Kepler problem
    Cabral, H
    Vidal, C
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 163 (01) : 76 - 88
  • [30] NON-REGULARIZABILITY OF ANISOTROPIC KEPLER PROBLEM
    DEVANEY, RL
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1978, 29 (02) : 253 - 268